Начало обмотки шагового двигателя

Как работает шаговый электродвигатель?

Для работы практически всех электрических приборов, необходимы специальные приводные механизмы. Предлагаем рассмотреть, что такое шаговый двигатель, его конструкцию, принцип работы и схемы подключения.

Что такое шаговый двигатель?

Шаговый двигатель представляет собой электрическую машину, предназначенную для преобразования электрической энергии сети в механическую энергию. Конструктивно состоит из обмоток статора и магнитомягкого или магнитотвердого ротора. Отличительной особенностью шагового двигателя является дискретное вращение, при котором заданному числу импульсов соответствует определенное число совершаемых шагов. Наибольшее применение такие устройства получили в станках с ЧПУ, робототехнике, устройствах хранения и считывания информации.

В отличии от других типов машин шаговый двигатель совершает вращение не непрерывно, а шагами, от чего и происходит название устройства. Каждый такой шаг составляет лишь часть от его полного оборота. Количество необходимых шагов для полного вращения вала будет отличаться, в зависимости от схемы соединения, марки двигателя и способа управления.

Преимущества и недостатки шагового электродвигателя

К преимуществам эксплуатации шагового двигателя можно отнести:

К недостаткам применения шагового двигателя относятся:

Устройство и принцип работы

Принцип действия шагового двигателя

Рис. 1. Принцип действия шагового двигателя

На рисунке 1 изображены 4 обмотки, которые относятся к статору двигателя, а их расположение устроено так, что они находятся под углом 90º относительно друг друга. Из чего следует, что такая машина характеризуется размером шага в 90º.

В момент подачи напряжения U1 в первую обмотку происходит перемещение ротора на те же 90º. В случае поочередной подачи напряжения U2, U3, U4 в соответствующие обмотки, вал продолжит вращение до завершения полного круга. После чего цикл повторяется снова. Для изменения направления вращения достаточно изменить очередность подачи импульсов в соответствующие обмотки.

Типы шаговых двигателей

Для обеспечения различных параметров работы важна как величина шага, на который будет смещаться вал, так и момент, прилагаемый для перемещения. Вариации данных параметров достигаются за счет конструкции самого ротора, способа подключения и конструкции обмоток.

По конструкции ротора

Вращаемый элемент обеспечивает магнитное взаимодействие с электромагнитным полем статора. Поэтому его конструкция и технические особенности напрямую определяют режим работы и параметры вращения шагового агрегата. Чтобы на практике определить тип шагового мотора, при обесточенной сети необходимо провернуть вал, если ощущаете сопротивление, то это свидетельствует о наличии магнита, в противном случае, это конструкция без магнитного сопротивления.

Реактивный

Реактивный шаговый двигатель не оснащается магнитом на роторе, а выполняется из магнитомягких сплавов, как правило, его набирают из пластин для уменьшения потерь на индукцию. Конструкция в поперечном разрезе напоминает шестерню с зубцами. Полюса статорных обмоток запитываются противоположными парами и создают магнитную силу для перемещения ротора, который двигается от попеременного протекания электрического тока в обмоточных парах.

С переменным магнитным сопротивлением

С переменным магнитным сопротивлением

Весомым плюсом такой конструкции шагового привода является отсутствие стопорящего момента, образуемого полем по отношению к арматуре. По факту это тот же синхронный двигатель, в котором поворот ротора идет в соответствии с полем статора. Недостатком является снижение величины вращающего момента. Шаг для реактивного двигателя колеблется от 5 до 15°.

С постоянными магнитами

В этом случае подвижный элемент шагового двигателя собирается из постоянного магнита, в котором может быть два и большее количеством полюсов. Вращение ротора обеспечивается притяжением или отталкиванием магнитных полюсов электрическим полем при подаче напряжения в соответствующие обмотки. Для этой конструкции угловой шаг составляет 45-90°.

С постоянным магнитом

С постоянным магнитом

Гибридные

Был разработан с целью объединения лучших качеств двух предыдущих моделей, за счет чего агрегат обладает меньшим углом и шагом. Его ротор выполнен в виде цилиндрического постоянного магнита, который намагничен по продольной оси. Конструктивно это выглядит как два круглых полюса, на поверхности которых расположены зубцы ротора из магнитомягкого материала. Такое решение позволило обеспечить отличный удерживающий и крутящий момент.

Устройство гибридного шагового двигателя

Устройство гибридного шагового двигателя

Преимущества гибридного шагового двигателя заключатся в его высокой точности, плавности и скорости перемещения, малым шагом – от 0,9 до 5°. Их применяют для высококлассных станков ЧПУ, компьютерных и офисных приборах и современной робототехнике. Единственным недостатком считается относительно высокая стоимость.

Для примера разберем вариант гибридных ШД на 200 шагов позиционирования вала. Соответственно каждый из цилиндров будет иметь по 50 зубцов, один из них является положительным полюсом, второй отрицательным. При этом каждый положительный зубец расположен напротив паза в отрицательном цилиндре и наоборот. Конструктивно это выглядит так:

Расположение пазов гибридника

Расположение пазов гибридника

Из-за чего на валу шагового двигателя получается 100 перемежающихся полюсов с отличной полярностью. Статор также имеет зубцы, как показано на рисунке 6 ниже, кроме промежутков между его компонентами.

Принцип работы гибридного ШД

Рис. 6. Принцип работы гибридного ШД

За счет такой конструкции можно достичь смещения того же южного полюса относительно статора в 50 различных позиций. За счет отличия положения в полупозиции между северным и южным полюсом достигается возможность перемещения в 100 позициях, а смещение фаз на четверть деления предоставляет возможность увеличить количество шагов за счет последовательного возбуждения еще вдвое, то есть до 200 шагов углового вала за 1 оборот.

Обратите внимание на рисунок 6, принцип работы такого шагового двигателя заключается в том, что при попарной подаче тока в противоположные обмотки происходит подтягивание разноименных полюсов ротора, расположенных за зубьями статора и отталкивание одноименных, идущих перед ними по ходу вращения.

По виду обмоток

На практике шаговый двигатель представляет собой многофазный мотор. Плавность работы в котором напрямую зависит от количества обмоток – чем их больше, тем плавне происходит вращение, но и выше стоимость. При этом крутящий момент от числа фаз не увеличивается, хотя для нормальной работы их минимальное число на статоре электродвигателя должно составлять хотя бы две. Количество фаз не определяет числа обмоток, так двухфазный шаговый двигатель может иметь четыре и более обмотки.

Униполярный

Униполярный шаговый двигатель отличается тем, что в схеме подключения обмотки имеется ответвление от средней точки. Благодаря чему легко меняются магнитные полюса. Недостатком такой конструкции является использование только одной половины доступных витков, из-за чего достигается меньший вращающий момент. Поэтому они отличаются большими габаритами.

Униполярный ШД

Униполярный ШД

Для использования всей мощности катушки средний вывод оставляют не подключенным. Рассмотрите конструкции униполярных агрегатов, они могут содержать 5 и 6 выводов. Их количество будет зависеть от того, выводится срединный провод отдельно от каждой обмотки двигателя или они соединяются вместе.

Схема а) с различными, б) с одним выводом

Схема а) с различными, б) с одним выводом

Биполярный

Биполярный шаговый двигатель подключается к контроллеру через 4 вывода. При этом обмотки могут соединяться внутри как последовательно, так и параллельно. Рассмотрите пример его работы на рисунке.

Биполярный шаговый двигатель

Биполярный шаговый двигатель

В конструктивной схеме такого двигателя вы видите с одной обмоткой возбуждения в каждой фазе. Из-за этого смена направления тока требует использовать в электронной схеме специальные драйверы (электронные чипы, предназначенные для управления). Добиться подобного эффекта можно при помощи включения Н-моста. В сравнении с предыдущим, биполярное устройство обеспечивает тот же момент при гораздо меньших габаритах.

Подключение шагового двигателя

Чтобы запитать обмотки, потребуется устройство способное выдать управляющий импульс или серию импульсов в определенной последовательности. В качестве таких блоков выступают полупроводниковые приборы для подключения шагового двигателя, микропроцессорные драйвера. В которых имеется набор выходных клемм, каждая из них определяет способ питания и режим работы.

В зависимости от схемы подключения должны применяться те или другие выводы шагового агрегата. При различных вариантах подведения тех или иных клемм к выходному сигналу постоянного тока получается определенная скорость вращения, шаг или микрошаг линейного перемещения в плоскости. Так как для одних задач нужна низкая частота, а для других высокая, один и тот же двигатель может задавать параметр за счет драйвера.

Типичные схемы подключения ШД

В зависимости того, какое количество выводов представлено на конкретном шаговом двигателе: 4, 6 или 8 выводов, будет отличаться и возможность использования той или иной схемы их подключения Посмотрите на рисунки, здесь показаны типичные варианты подключения шагового механизма:

Схемы подключения шагового двигателя

Схемы подключения различных типов шаговых двигателей

При условии запитки основных полюсов шаговой машины от одного и того же драйвера, по данным схемам можно отметить следующие отличительные особенности работы:

Управление шаговым двигателем

Выполнение операций шаговым агрегатом может осуществляться несколькими методами. Каждый из которых отличается способом подачи сигналов на пары полюсов. Всего выделяют тир метода активации обмоток.

Волновой – в таком режиме происходит возбуждение только одной обмотке, к которой и притягиваются роторные полюса. При этом шаговый двигатель не способен вытягивать большую нагрузки, так как выдает лишь половину момента.

Волновое управление

Волновое управление

Полношаговый — в таком режиме происходит одновременная коммутация фаз, то есть, возбуждаются сразу обе. Из-за чего обеспечивается максимальный момент, в случае параллельного соединения или последовательного включения обмоток будет создаваться максимальное напряжение или ток.

Полношаговое управление

Полношаговое управление

Полушаговый – представляет собой комбинацию двух предыдущих методов коммутации обмоток. Во время реализации которого в шаговом двигателе происходит поочередная подача напряжения сначала в одну катушку, а затем сразу в две. Благодаря чему обеспечивается лучшая фиксация на максимальных скоростях и большее количество шагов.

Полушаговое управление

Полушаговое управление

Для более мягкого управления и преодоления инерции ротора используется микрошаговое управление, когда синусоида сигнала осуществляется микроступенчатыми импульсами. За счет чего силы взаимодействия магнитных цепей в шаговом двигателе получают более плавное изменение и, как следствие, перемещение ротора между полюсами. Позволяет в значительной степени снизить рывки шагового двигателя.

Без контроллера

Для управления бесколлекторными двигателями применяется система Н-моста. Который позволяет переключать полярность для реверса шагового двигателя. Может выполняться на транзисторах или микросхемах, которые создают логическую цепочку для перемещения ключей.

Схема Н-моста

Схема Н-моста

Как видите, от источника питания V напряжение подается на мост. При попарном включении контактов S1 – S4 или S3 – S2 будет происходить движение тока через обмотки двигателя. Что и обусловит вращение в ту или иную сторону.

Читайте также:  Снимаем коробку передач уаз

С контроллером

Устройство контроллера позволяет осуществлять управление шаговым двигателем в различных режимах. В основе контроллера лежит электронный блок, формирующий группы сигналов и их последовательность, посылаемых на катушки статора. Для предотвращения возможности его повреждения в случае короткого замыкания или другой аварийной ситуации на самом двигателе каждый вывод защищается диодом, который не пропусти импульс в обратную сторону.

Подключение через контроллер ШД

Подключение через контроллер однополярного шагового двигателя

Популярные схемы управления ШД

Управление от контроллера с дифференциальным выходом

Схема управления от контроллера с дифференциальным выходом

Является одним из наиболее помехозащищенных способов работы. При этом прямой и инверсный сигнал напрямую подключается к соответствующим полюсам. В такой схемы должно применяться экранирование сигнального проводника. Прекрасно подходит для нагрузки с низкой мощностью.

Управление от контроллера с выходом типа «открытый коллектор»

Схема управления от контроллера с выходом типа «открытый коллектор»

В данной схеме происходит объединение положительных вводов контроллера, которые подключаются к положительному полюсу. В случае питания выше 9В требуется включение в схему специального резистора для ограничения тока. Позволяет задавать необходимое количество шагов со строго установленной скоростью, определить ускорение и т.д.

Простейший драйвер шагового двигателя своими руками

Чтобы собрать схему драйвера в домашних условиях могут пригодиться некоторые элементы от старых принтеров, компьютеров и другой техники. Вам понадобятся транзисторы, диоды, резисторы (R) и микросхема (RG).

Схема простейшего драйвера

Схема простейшего драйвера

Для построения программы руководствуйтесь следующим принципом: при подаче на один из выводов D логической единицы (остальные сигнализируют ноль) происходит открытие транзистора и сигнал проходит к катушке двигателя. Таким образом, выполняется один шаг.

На основе схемы составляется печатная плата, которую можно попытаться изготовить самостоятельно или сделать под заказ. После чего на плате впаиваются соответствующие детали. Устройство способно управлять шаговым устройством от домашнего компьютера за счет подключения к обычному USB порту.

Полезное видео



Источник

Изучаем миниатюрный шаговый двигатель

Шаговые двигатели нашли широкое применение в современной промышленности и самоделках. Их используют там, где необходимо обеспечить точность позиционирования механических узлов, не прибегая к помощи обратной связи и точным измерениям.

Сегодня хочу поговорить об особой разновидности шаговых моторов — миниатюрные шаговые двигатели, которые применяются в конструкциях оптических систем. Мы подробно рассмотрим их устройство и способы управления такими крошечными моторчиками.

Мы не будем останавливаться на рассмотрении каждого типа шагового двигателя. Об этом в сети написано довольно много и хорошо, например здесь.

Хочу поговорить об особой разновидности шаговых моторов — миниатюрные шаговые двигатели, которые применяются в конструкциях оптических систем. Такие малыши имеются в свободной продаже. Но в сети, особенно в русскоязычной, очень мало информации по таким моторчикам. Потому, когда мне потребовалось использовать их в своём проекте, пришлось изрядно поискать информации и провести пару экспериментов.

Результатами своих поисков и экспериментами я поделюсь в этой статье.

Мы рассмотрим вопросы управления такими маленькими моторчиками, а именно:

Знакомство

Сначала немного посмотрим на внешний вид нашего героя:

Он действительно очень маленький! Согласно умной книжке Петренко С.Ф.
«Пьезоэлектрические двигатели в приборостроении», меньших размеров электромагнитные моторчики создать в принципе невозможно… то есть возможно, но с уменьшением диаметра проволоки, из которой изготавливают обмотки, всё больше энергии рассеивается в виде тепла в окружающую среду, что приводит к уменьшению КПД моторчика и делает их использование нерациональным.

Из примечательного, можно отметить, что его вал очень короткий и имеет специальную проточку для установки шестерни или рычага.

Отчётливо видны две обмотки, которые даже покрыты изоляцией разного цвета. Значит, наш моторчик относится, скорее всего, к классу биполярных шаговых двигателей.
Посмотрим как он устроен:

Считаю, наше знакомство с этими моторчиками будет не полным, если мы не посмотрим, что же у него внутри. Ведь всегда интересно заглянуть внутрь механизма! Разве нет?

Собственно, ничего необычного мы не увидели. Ротор намагничен. Подшипников нигде не наблюдается, всё на втулках. Задняя втулка запрессована в корпус двигателя. Передняя ничем не закреплена. Интересно, что корпус двигателя собирался точечной сваркой. Так что переднюю крышку корпуса пришлось спиливать.

Теперь перейдём к вопросу подключения и его электрическим характеристикам.

Убедимся, что он биполярный, прозвонив обмотки. Действительно биполярный, всё как на картинке выше. Сопротивление обмоток около 26Ом, хотя продавец указал 14Ом.
В описании сказано, что напряжение питания 5В. Хотя мы то с вами знаем, что для шагового двигателя важен ток, который будут потреблять его обмотки.
Пробуем подключить.

Эксперимент №1. L293D + ATtiny44

Как мы знаем, для управления биполярным шаговым двигателем необходимо не просто прикладывать напряжения к двум обмоткам в нужной последовательности, но и изменять направление тока в этих обмотках, причём делать это независимо друг от друга. Для этого на каждую обмотку нужен собственный Н-мост. Чтобы не городить его из транзисторов, был взят готовый в лице микросхемы L293D. Ещё одно её преимущество — у микросхемы имеются специальные выводы Enable1 и Enable2, который включают и выключают каждый мост. Их можно использовать чтобы подавать ШИМ сигнал, тем самым, возможно контролировать напряжения питания каждого моста. Зачем это может понадобиться, мы увидим дальше.

Кроме того, L293D может коммутировать напряжения до 36В и выдавать до 1,2А на каждый канал, чего вполне должно хватить для питания обмоток нашего моторчика.

Управляющие входы L293D подключены к выходам OC0A и OC0B, что позволит в будущем подавать на них ШИМ сигнал.

Прошивать контроллер будем через внутрисхемный программатор (на схеме не указан).
Вот как выглядит собранная схема на макетной плате:

И вот так расположен наш подопытный:

Теперь можно приступать к экспериментам.

Рассчитаем ток, который будет течь через обмотки двигателя при подключении их к напряжению 5В:

I=U/R = 5В/26Ом = 190мА

Совсем небольшой. Интересно как долго он сможет держать такой ток и не перегреться.

Включим в цепь одной из обмоток амперметр и вольтметр, и проведём замеры соответствующих величин при подачи питания на эту обмотку через драйвер.

При падении напряжения на обмотке 2.56В амперметр показывает ток 150мА, причём хорошо заметно, как начинает падать величина силы тока в процессе нагревания обмоток. Надо отметить, что не так уж и сильно он греется.

Убедившись, что напряжение 5В для моторчика опасности не представляет, попробуем покрутить им в разные стороны. И вот теперь пару слов мы скажем про режимы работы шагового двигателя.

Об этом довольно хорошо сказано здесь.

Не будем повторяться, но вспомним, что шаговый двигатель может работать в трёх режимах:

Исходный код программы выглядит следующим образом:

Полношаговый режим. Одна фаза

Двигатель делает 16 шагов на один оборот. Причём шаги для двух фаз имеют не одинаковую угловую величину. Не знаю с чем это связано. Может конструкция двигателя такая?

Посмотрим на максимальную частоту шагов, которую он может обеспечить в таком режиме, не пропуская их.

Минимальная задержка между шагами 2мс, значит 500 шагов/секунду. Неплохо, это 31 об/сек = 1850 об/мин.

Полношаговый режим. Две фазы

Обратите внимание, что в этом случае шаги получаются ровнее, они одинаковы по величине (во всяком случае, более одинаковы, чем в предыдущем случае).

Естественно, в этом случае под напряжением находятся одновременно две обмотки и теплоотдача возрастает. Двигатель уже через несколько секунд нагревается достаточно сильно, потому эксперимент я прекратил.

Что с максимальной частотой шагов? 500 шагов/секунду; 31 об/сек = 1875 об/мин.
Надо сказать, что для шагового двигателя он довольно шустрый. Это связано с малым количеством магнитных полюсов на роторе.

Эксперимент №2. TMC2208 + ATtiny44

TMC2208 — название микросхемы-драйвера для управления биполярными шаговыми двигателями, аналогично называется модуль на её основе, который выпускается для установки в самодельные (и не только) 3D принтеры и имеет унифицированное расположение выводов.
Много и доходчиво сказано про этот модуль вот здесь.

В интернете много написано про то, как установить его в свой 3D принтер, но нас интересует как подключить модуль к микроконтроллеру, потому давайте разбираться.

Характеристики микросхемы впечатляют (только впечатлительных людей):

Управлять ей очень просто, по сути нужно всего два пина микроконтроллера. Один подключаем к DIR — указываем направление вращения двигателя, другой подключаем к STEP — при подаче импульса микросхема производит необходимые манипуляции с токами и напряжениями на обмотках двигателя и тот делает один шаг.

Схема подключения будет выглядеть так:

Дополнительно я использовал пин EN, чтобы отключать моторчик и длительное время не держать обмотки под напряжением.

Перед тем как всё запустить нужно произвести предварительную настройку модуля. Во-первых, выставить желаемый режим микрошага. Во-вторых, выставить желаемый максимальный ток двигателя.

С микрошагом всё просто. За это отвечают пины MS1 и MS2.

Отмечу, что микросхема не скачкообразно меняет напряжение, а делает это «плавно», но так как микросхема цифровая, то на выходе у нас не гладкий сигнал, а сигнал с маленьким шагом, если верить документации, то каждый шаг она разбивает на 256 микрошагов. Сделано это для увеличения плавности хода, снижения шумов от двигателя и по идее не должно позволять конструкции, к которой он прикручен, входить в резонанс. Короче, всё для того, чтобы 3D принтер работал тише.

Чтобы выставить ток двигателя необходимо измерить напряжения на контакте Vref, который указан на рисунке. Изменить значение напряжения можно при помощи потенциометра, установленного рядом с контактом. Напряжение на контакте будет пропорционально току двигателя, и зависимость будет иметь следующий вид:

Нашему моторчику нужно примерно 150мА, потому Vref = 0,216В. Устанавливаем…

Подразумевается, что увеличение тока микросхема обеспечивает за счёт увеличения напряжения на обмотке. Потому, нужно позаботиться о том, чтобы этого напряжения хватило. Но, полагаю, для того маленького моторчика должно хватить и 5В.

Протестируем работу моторчика с различными режимами микрошага и посмотрим что получится (пауза между микрошагами 10мс):

Можно заметить, что движения моторчика стали более плавными (по сравнению с предыдущим экспериментом), однако характерные 16 шагов всё равно наблюдаются довольно чётко. Что же… видимо это черта шаговых двигателей с ротором из постоянных магнитов.
Ещё необходимо отметить, что моторчик в этом режиме нагревается почти также сильно, как в полношаговом режиме с двумя фазами. Оно и понятно, обмотки постоянно находятся под напряжением, непрерывно происходит выделение тепла.

Полагаю, для таких моторчиков использование такого драйвера, да и вообще режимов микрошага не очень целесообразно.

Эксперимент №3. ATtiny44-драйвер

Вернёмся ненадолго к первому эксперименту и вспомним, что входы EN1 и EN2 микросхемы драйвера подключены к пинам OC0A и OC0B микроконтроллера. Это значит, что мы можем подать туда ШИМ сигнал, генерируемый при помощи таймера TIMER0 и таким образом изменять напряжение, прикладываемое к обмоткам двигателя и соответственно регулировать ток, который будет протекать через них.

Читайте также:  Обороты двигателя растут сами

Согласно даташиту на микроконтроллер ATtiny44 максимальный ток, который может выдать один пин составляет всего 40мА. Причём не указано для какого вида тока (пульсирующего или постоянного) эта характеристика. Просто она есть и она вот такая…

Надо сказать, что я более 7 лет знаком с микроконтроллерами фирмы ATMEL. И ни разу у меня не возникло желания проверить эту строчку из даташита.

Возможно, производитель просто подстраховывается и на самом деле он может выдать больше, а может это действительно максимум, что может выдать один пин.

Мы это выясним. Но сначала нужно выяснить при каком минимальном токе моторчик вообще способен вращаться.

Используя схему из первого эксперимента, подгоняем значение тока через обмотки равное 40мА. Запускаем в полношаговом режиме с двумя фазами (так как будет выше крутящий момент):

Отлично! При 40мА двигатель успешно запустился! Был также выявлено минимальное значение тока обмоток, необходимое для устойчивой работы мотора, и равно оно 30мА.

Разумеется, крутящий момент будет значительно ниже, но для нас важен сам факт того, что удалось запустить моторчик с таким маленьким энергопотреблением.

Схема подключения шагового двигателя к микроконтроллеру будет следующей:

Поскольку каждый пин микроконтроллера работает как полумост (может коммутировать вывод микросхемы либо на Vcc, либо на GND), то для управления биполярным шаговым мотором нам понадобиться 4 пина микроконтроллера.

Немного поясню как работает эта программа. Это модифицированный код из первого эксперимента. Как я говорил выше, будет использован 8 битный TIMER0 для генерирования ШИМ сигнала на выходах OC0A и OC0B. Таймер настраивается в режим FastPWM с предделителем на 8 (частота сигнала при 8МГц тактового генератора микроконтроллера составляет 3906Гц).

Чтобы изменять полярности сигналов на обмотках происходит переключение пина микроконтроллера от Vcc к GND изменением соответствующего бита в регистре PORTx и изменением коэффициента заполнения ШИМ путём записи значений в регистры OCR0A и OCR0B (значения подбирались экспериментально).

Курс схемотехники, прослушанный на первом курсе института подсказывает, что мультиметр показывает среднеквадратическое значение напряжения и тока в двигателе.

Шаговый двигатель вращается от пинов микроконтроллера без драйверов!

Но здесь мы не выходим за пределы возможностей микроконтроллера, по крайней мере, если верить тому, что пишут в документации. В таком режиме микроконтроллер и моторчик могут работать долго. Действительно, эксперимент длился 20 минут. За это время не наблюдалось ни пропуска шагов, ни сброса контроллера, ни перегрева (ни у двигателя, ни у контроллера).

Отбросим все предосторожности

Уберём из эксперимента ШИМ и будем напрямую управлять пинами микроконтроллера при помощи регистров PORTx. Посмотрим что будет с микроконтроллером после этого.

Работает… с максимальным током в 51мА… Что же… неожиданно, похоже это и есть предельный ток, который может отдать один пин микроконтроллера? Если я ошибаюсь, поправьте меня.

В любом случае, ролик с ютуба не обманул. Действительно можно управлять этим моторчиком без всяких драйверов.

Выводы

Мы подробно изучили миниатюрные биполярные шаговые моторчики, их конструкцию и способы управления ими, для использования в собственных приложениях.

1. Миниатюрный биполярный шаговый мотор с ротором из постоянных магнитов действительно миниатюрный.

Его основные особенности:

3. Использование специализированного драйвера TMC2208 является спорным вопросом, так как микрошаговый режим не поддерживается самим двигателем, хотя переходы между шагами выполняются более плавно.

4. Возможно подключение шагового двигателя непосредственно к портам микроконтроллера. Но это только в рамках эксперимента, так как крутящий момент в данном случае совсем незначителен, да и малый ток не позволяет совершать шаги с большой скоростью.

В следующий раз расскажу, для чего именно нам потребовались такие маленькие шаговые моторчики.

Источник

Шаговые двигатели: особенности и практические схемы управления. Часть 1

Владимир Рентюк, Запорожье, Украина

В статье описываются основные типы шаговых двигателей и особенности их применения в конкретных приложениях. Приведены практические схемы управления.

Часть 1. Общие вопросы использования

В одной из предыдущих статей на тему управления двигателями постоянного тока [1] был кратко упомянут один из типов двигателей постоянного тока, а именно – шаговый двигатель, описание которого вышло за рамки статьи, и было ограничено одной лишь ссылкой. Учитывая обращения читателей с просьбой раскрыть эту тему на страницах журнала РадиоЛоцман, автор и редакция выполняют эту просьбу.

Итак, что такое шаговые двигатели (англ. «stepper motor» или «stepping motor»)? Шаговый двигатель – это бесколлекторный двигатель постоянного тока, наиболее общие разновидности которого представлены на Рисунке 1. В некоторой технической литературе его ошибочно относят к многофазным (чаще двухфазным) двигателям. Это не совсем верно. Действительно, и это будет рассмотрено ниже, есть такой режим управления, который с некоторой натяжкой можно отнести к фазовому, но это совершенно не означает «фазовость» такого двигателя в общем понимании этого термина, применимом к двигателям переменного тока.

Какова же основная отличительная особенность шагового двигателя? Дело в том, что его конструкция разработана таким образом, что сдвиг ротора происходит скачкообразно, то есть пошагово, в ответ на импульс тока в его обмотках, создаваемый приложенным к ним напряжением. Начальный шаг задается конструктивно, и может быть уменьшен схемными ухищрениями, но не может быть увеличен. При этом в общем случае, естественно в зоне номинальных рабочих значений, важен сам факт наличия импульса, а не его длительность или амплитуда тока. В чем-то он напоминает шаговые реле, но если в реле «пошаговость» задается электромагнитом и храповиком, то в двигателях такого механизма нет. Все основано на взаимодействии магнитных полей ротора, который выполнен в виде постоянного магнита с N-полюсами, и статора, который содержит обмотки (в одном из типов двигателя они дополнены постоянными магнитами), формирующие переменный магнитный поток в соответствии с управляющими импульсами.

Что делает шаговые двигатели такими привлекательными для разработчиков, и что недостижимо с двигателями других типов? Шаговый двигатель имеет значительно бóльшую надежность и, что совсем немаловажно для целого ряда практических применений, он, в отличие от коллекторного двигателя, практически не увеличивает уровень паразитных электромагнитных и радиопомех. Причина кроется как раз в отсутствии подвижного контакта токосъемника. Однако отсутствие коллектора, переключающего для формирования момента вращения направление тока в обмотках, требует внешнего управления – коммутатора. Тут, повторю французскую пословицу – «За каждое удовольствие нужно платить».

Еще одна тонкость – шаговые двигатели, в отличие от всех остальных типов двигателей, могут давать не только привычное вращательное движение ротора, но и шаговое линейное – возвратно-поступательное, используемое, например, в приводах дисководов и принтеров, а также в актуаторах – управляемых точных клапанах (Рисунок 1в). Но главное преимущество шаговых двигателей – это точность позиционирования ротора и возможность его длительного удержания в заданном положении без перегрузки двигателя. Момент удержания у шаговых двигателей превышает момент вращения, поэтому удерживать ротор можно током меньшего уровня. Практическая реализация этой возможности будет продемонстрирована на конкретных примерах. Поскольку момент вращения таких двигателей максимален на малых скоростях (к этому мы еще вернемся), то в целом ряде применений можно отказаться от дорогостоящих редукторов. Перечисленное выше и есть самая характерная особенность и отличие шаговых двигателей от коллекторных двигателей постоянного тока. Это делает шаговые двигатели незаменимыми в системах точных приводов, когда требуется выполнять условия по позиционированию, а это – робототехника, станки, автоматы и пр. Справедливости ради отметим и основные недостатки. Их три: высокая цена, относительная сложность управления по сравнению с коллекторными двигателями и низкая скорость вращения.

В настоящее время имеются три основных типа шаговых двигателей.

Являются наиболее дорогими, зато обеспечивают значительно меньшую начальную величину шага, бóльший момент и бóльшую скорость, чем двигатели с постоянными магнитами. Эти двигатели сочетают в себе лучшие черты первых двух разновидностей. Ротор такого двигателя имеет зубцы, расположенные в осевом направлении. Конструкция и внутреннее устройство типового гибридного шагового двигателя показаны на Рисунке 2. Типичное число зубцов гибридного двигателя от 100 до 400 (угол шага 3.6°– 0.9°). Статор гибридного двигателя также имеет зубцы, обеспечивая большее количество эквивалентных полюсов на которых расположены обмотки. Обычно используются 4 основных полюса для 3.6° и 8 основных полюсов для 1.8° или 0.9°. Большинство двигателей этого типа имеет 100 полюсов (50 пар), и с учетом двухфазного исполнения полное количество полюсов равно 200, а угол шага равен 1.8° (360/200).

Шаговые двигатели: особенности и практические схемы управления
Рисунок 2. Типовая конструкция гибридного шагового двигателя.

Кроме различий в общей конструкции, шаговые двигатели отличаются еще и схемой включения обмоток. Имеются три варианта их конфигураций (Рисунок 3), в зависимости от которой двигатели делятся на униполярные (англ. «unipolar») и биполярные (англ. «bipolar»).

Униполярный двигатель (Рисунок 3а), имеет включенной одну обмотку в каждой фазе, с отводом от середины каждой обмотки. Это позволяет изменять направление магнитного поля, создаваемого обмоткой, переключением ее половинок. Как правило, униполярный двигатель имеет 6 выводов, но средние выводы обмоток могут быть объединены внутри самого двигателя, поэтому такой двигатель может иметь и 5 выводов. Таким образом, если вам в руки попался неизвестный двигатель с шесть или пятью выводами – это гарантировано униполярный шаговый двигатель.

Биполярный двигатель (Рисунок 3б), имеет две обмотки, которые включаются поочередно в каждой фазе. Некоторые двигатели имеют четыре расщепленные обмотки (Рисунок 3в); по этой причине их ошибочно называют 4-фазными двигателями.

Что важно знать и учитывать в части особенностей включения обмоток статора? Нетрудно заметить, что униполярный шаговый двигатель можно использовать в биполярном включении; двигатель с расщепленными обмотками, при соответствующем соединении обмоток, можно использовать и как униполярный, и как биполярный. Кроме того, двигатель с таким вариантом исполнения обмоток может использоваться с параллельным и последовательным включением обмоток. Это позволяет увеличить момент, развиваемый двигателем при низком напряжении питания (параллельное включение обмоток), или уменьшить ток потребления с увеличением питающего обмотки напряжения (последовательное включение обмоток). Фазировка обмоток важна – она определяет направление вращения двигателя, и вообще его работоспособность. Обращаю внимание читателей, что пока никакой стандартизации цветов выводов шаговых двигателей нет, так что фазировку иногда приходится устанавливать экспериментально. Но, если вы ее и перепутаете, то ничего критического ни с двигателем, ни с системой управления не произойдет.

Читайте также:  Подбираем масло для двигателя

Нетрудно увидеть, что в двигателе с биполярным включением обмоток одновременно работают все обмотки, и момент, развиваемый двигателем, будет выше. Выигрыш в моменте вращения составляет примерно 40%.

Имеется несколько вариантов управления шаговым двигателем (Рисунок 4). Обращаю внимание читателей, что на рисунках приведена не форма напряжения, что вы обычно встретите в литературе и на интернет сайтах, а форма тока. Это важно! В управлении шаговым двигателем важен именно ток, а не приложенное к обмоткам напряжение, которое имеет прямоугольную форму.

Рассмотрим пока общие особенности. Итак, на Рисунке 4 показана форма тока в обмотках двигателя относительно нуля для четырех основных вариантов управления. Наиболее простой вариант – это попеременная коммутация фаз, при которой они не перекрываются, и в каждый момент времени включена только одна фаза (Рисунок 4а). Этот режим называют волновым (англ. «wave drive mode») или полношаговым режимом управления с одной фазой («one phase on full step mode»). Точки равновесия ротора для каждого шага совпадают с «естественными» точками равновесия у обесточенного двигателя. Недостатком этого способа управления является то, что для биполярного двигателя в один и тот же момент времени используется только 50% обмоток, а для униполярного – 25%. Это означает, что в таком режиме не может быть получен полный возможный момент вращения.

Чаще всего используется управление с перекрытием фаз, когда в одно и то же время включены обе обмотки (Рисунок 4б). В общем случае именно его и называют полношаговым режимом управления (англ. «full step mode» или «two-phase-on»). При этом способе управления ротор фиксируется в промежуточных позициях между полюсами статора, обеспечивая примерно на 40% больший момент, чем в предыдущем варианте с одной включенной фазой. Этот способ управления обеспечивает такой же угол шага, как и волновой, но положение точек равновесия ротора смещено на полшага, что часто не является критическим. Иногда это необходимо учитывать для двигателей с большим шагом, так как обесточенный двигатель, например с шагом 18° после остановки сместится на 9°. Чтобы ротор такого двигателя не смещался при выключении, на двигатель в режиме остановки подают некоторый ток удержания, который сохранит заданное положение ротора. Именно это свойство шагового двигателя позволяет обходиться без специальных электромагнитных или механических тормозных муфт и удерживающих систем.

Третий основной способ управления является комбинацией двух описанных ранее и называется полушаговым режимом («half step mode» или «one and two-phase-on»). В этом режиме двигатель за один импульс управления делает шаг, равный половине основного (Рисунок 4в). Этот режим требует более сложной схемы управления, но позволяет осуществлять более точное позиционирование ротора и уменьшает негативное влияние его механического резонанса. Иными словами, используя двигатель с угловым шагом 1.8°, мы получаем шаг, равный 0.9°.

Еще меньшую градацию, вернее, дробление шага, дают микрошаговые системы управления («micro stepping mode»), основанные на постепенном изменении тока в обмотках (Рисунок 4г). Такие системы достаточно сложны. Они требуют применения не только специальных ИМС драйверов с ЦАП, но и микропроцессорного управления. Именно этот режим часто приводит к путанице, в результате которой шаговые двигатели причисляют к многофазным двигателям переменного тока.

Увидеть «вживую» все тонкости процесса управления можно на сайте компании Nanotec Electronic [4]. Анимация, приведенная на сайте, позволяет увидеть «реальную» работу виртуального биполярного двигателя для полношагового (Fullstep) и микрошагового (Microstep) режимов управления. Интерфейс сайта достаточно прост. Скриншот примера анимации приведен на Рисунке 5.

Шаговые двигатели: особенности и практические схемы управления
Рисунок 5. Анимация, иллюстрирующая работу биполярного двигателя.
(С сайта компании Nanotec Electronic).

На Рисунке 4 недаром приведена форма тока в обмотках, а не управляющего напряжения. Как известно, ток в индуктивности (а обмотка двигателя является индуктивностью) не может изменяться скачком, а растет по экспоненте до значения IMAX = VDC/R:

Требуемое для этого время определяется постоянной времени цепи τ = L/R. Здесь L – индуктивность обмотки двигателя, а R – общее сопротивление в цепи обмотки. Что из этого следует? Следует то, что при некоторой длительности импульса ток в обмотке не достигнет своего номинального значения, и момент на двигателе будет снижен, а при каких-то значениях длительности его ротор вообще не сдвинется с места. Вот этот эффект и ограничивает скорость вращения шагового двигателя. Проблема решается тремя способами. Первый заключается в том, что на некоторое начальное время напряжение на обмотке увеличивается, а потом уменьшается до номинального значения VDC= IMAXRL, где IMAX – максимальный номинальный ток обмотки, а RL – активное сопротивление обмотки. Это сложно, так как требует специальных схем управления с дополнительными ключами и источниками питания.

Классическим и самым простым методом оказывается включение последовательно с обмоткой двигателя дополнительного сопротивления с одновременным кратным увеличением напряжения питания VDC. Это и ускорит накопление тока в индуктивности, и не приведет к выходу двигателя из строя, так как требование по максимальному току обмотках не будет нарушено. В классической теории обычно используется режим L/5R, но на практике могут встречаться и иные варианты. Недостатком этого способа форсирования тока является необходимость использования мощных резисторов и энергетические потери, поэтому его применяют преимущественно для маломощных двигателей. Чтобы облегчить читателю освоение этого метода, рассмотрим один пример.

В спецификации двигателя P542-M48 [6] указан момент для режима L/4R, его сопротивление обмотки RL = 52.4 Ом, номинальное напряжение VDC = 12 В. Обращаю внимание читателей, что при указании L/4R имеется в виду общее сопротивление, то есть сумма собственного сопротивления обмотки RL и добавочного резистора номиналом 3RL, равного в нашем случае 157.2 Ом. Таким образом, при повышении напряжения питания до 4VDC на добавочных резисторах при малых скоростях вращения и, особенно, при остановке двигателя будет рассеиваться мощность:

Фактически, с учетом допустимого коэффициента нагрузки для резисторов, нам придется использовать добавочный резистор сопротивлением 160 Ом с рассеиваемой мощностью не менее 10 Вт.

Выходом из положения может быть использование импульсных стабилизаторов с ограничением максимального тока. Применение этого метода для коллекторных двигателей было рассмотрено в [1]. Повторим его суть. На двигатель от импульсного преобразователя подается повышенное в несколько раз напряжение, которое формирует ускоренный процесс заряда индуктивности обмоток. После достижения заданной величины тока преобразователь переходит из режима стабилизации напряжения в режим стабилизации тока и удерживает ток обмотки на заданном уровне. Именно этот режим питания обмоток показан на Рисунке 4 (видна нарезка). Это решение нельзя назвать дешевым, но его КПД несравненно выше, и в ряде случаев это единственный возможный для реализации вариант. Дело упрощает то, что обычно этот режим уже встроен в управляющую ИМС драйвера [2]. Сравнение методов управления током в обмотках двигателя показано на Рисунке 6.

Рисунок 6. Форма тока в обмотках шагового двигателя при
различных вариантах питания [3].

Еще одним препятствием на пути использования шаговых двигателей является явление механического резонанса, поскольку ротор не сразу устанавливается в новую позицию, а, являясь своеобразным маятником, совершает затухающие колебания. При каждом шаге происходит толчок ротора, который, как и любая свободно подвешенная механическая система, начинает колебаться, и двигатель на некоторых частотах вращения теряет свой момент. Для подавления колебаний ротора используются либо механические методы (различного рода демпфирующие, притормаживающие фрикционные или бесфрикционные системы), либо используется микрошаговый режим управления. Системы управления с дроблением шага благодаря постепенному смещению ротора (основной шаг дробится на некоторую заданною системой управления величину, обычно 1/8, 1/16 или 1/32) уменьшают механические колебания ротора, сводя их практически к нулю.

Кроме описанных выше проблем, связанных с индуктивным характером шагового двигателя, как нагрузки для источника питания, ограничение по начальной стартовой скорости связано и с конструктивными особенностями, а именно с массой ротора, то есть его инерцией, о чем также упоминалось при рассмотрении способов коммутации обмоток. Иными словами, двигатель иногда необходимо разгонять до необходимой скорости. В некоторых спецификациях для шаговых двигателей приводятся две важные для разработчика кривые, показывающие зависимости момента, развиваемого на валу двигателя, от скорости вращения (Рисунок 7).

Рисунок 7. Зависимость момента от скорости вращения ротора
двигателя серии DSH56 [5].

Внутренняя кривая (кривая старта, или «pull-in torque») показывает, при каком максимальном для данной скорости внешнем тормозящем моменте шаговый двигатель способен тронуться без предварительного ускорения, то есть без разгона. Эта кривая пересекает ось скоростей в точке, называемой максимальной частотой старта. На более низких скоростях шаговый двигатель еще может синхронизировать себя с частотой шага, преодолев действие внешних сил и инерцию ротора. Необходимо заметить (а это часто умалчивается изготовителями), что этот параметр задается для определенного режима работы и включения обмоток двигателя (в данном случае он задан для полушагового режима в униполярном включении обмоток двигателя), а нагрузка двигателя при замере этого параметра является фрикционной, а не инерционной. То есть, ротор двигателя искусственно заторможен, что уменьшает его нежелательные колебания под воздействием импульса тока в обмотке, и, следовательно, скорость вращения двигателя будет выше. Режим управления для этого параметра так же важен, поскольку в полушаговом режиме резонансные явления уже уменьшены. Внешняя кривая (кривая разгона, или «pull-out torque») показывает, при каком максимальном моменте для данной скорости шаговый двигатель вообще способен поддерживать вращение без пропуска шагов, но уже с учетом того, что произведен плавный разгон двигателя. Кривая показывает максимальную скорость для данного двигателя без нагрузки. Этот параметр зависит от тока в обмотках двигателя и способа управления обмотками. Обычно рекомендуют использовать «запас прочности» по этим параметрам от 50% до 100% по сравнению с необходимым вращающим моментом. Это необходимо учитывать для гарантии получения заданных характеристик.

Таким образом, повторюсь (поскольку это важно), может потребоваться разгон двигателя на малых скоростях до необходимой рабочей скорости, а процесс остановки включает уменьшение скорости вращения двигателя до ее некоторого минимального значения с переводом в режим удержания. В противном случае гарантировать точность позиционирования ротора может быть невозможно. Более того, вследствие инерционности системы может произойти даже разрушение редуктора, если он используется. Ну и нельзя забывать о подтормаживании, которое в любом случае оказывается не просто полезным, а часто и необходимым для точного позиционирования в системах со сложными приводами, использующими редукторы или передачи, но это уже относится не непосредственно к шаговому двигателю, а к системе привода в целом.

Источник