Начало впрыска дизельного двигателя

Содержание
  1. Начало впрыска дизельного двигателя
  2. Система впрыска дизельного двигателя
  3. Воспламенение дизельного топлива.
  4. Нагрев воздуха в камере сгорания
  5. Как происходит воспламенение.
  6. Увеличение мощности двигателя
  7. Увеличение объёма воздуха в камере сгорания
  8. Классическая система впрыска топлива.
  9. Система Комон рейл
  10. Система common rail принцип работы
  11. Устройство системы комон рейл
  12. Начало впрыска дизельного двигателя
  13. Впрыск топлива в дизельном двигателе и его регулировка
  14. Почему дизельному двигателю нужен регулятор?
  15. Работа регулятора
  16. Снижение оборотов регулятора
  17. Функции регулятора
  18. Регулировка максимальных оборотов
  19. Регулировка промежуточных оборотов
  20. Управление низкими оборотами холостого хода
  21. Управление крутящим моментом
  22. Характеристики подачи топлива
  23. Электронная система впрыска дизельного двигателя
  24. Запоздалее или раннее зажигание – как определить, признаки на дизеле, симптомы на инжекторе, газу и прочие варианты » АвтоНоватор
  25. Важность правильной регулировки зажигания
  26. Принцип работы зажигания
  27. Признаки позднего зажигания
  28. Раннее или позднее зажигание, что лучше?
  29. Признаки раннего зажигания
  30. Признаки позднего зажигания
  31. Признаки раннего и позднего зажигания на КАМАЗе
  32. Автомобиль с ГБО
  33. Дизельный автомобиль
  34. Как выставить зажигание на дизельном двигателе
  35. Как выставить угол опережения впрыска на дизеле
  36. Установка угла по меткам
  37. Подбор правильного угла впрыска
  38. Дизельные системы впрыска
  39. Принцип работы
  40. Типы дизельных систем питания
  41. С рядным насосом
  42. С насосным оборудованием распределительного типа
  43. Насос-форсунки
  44. Система впрыска дизельного двигателя Сommon Rail
  45. Видеообзор интерактивной программы
  46. Система подачи топлива в дизельных двигателях: разновидности и отличия
  47. Как работает топливная система дизельного двигателя
  48. Системы питания дизельных двигателей: обзор
  49. Подведем итоги
  50. Угол опережения впрыска (УОВ) и нагрузка в дизельном двигателе
  51. Toyota Corolla ’85 CE80 1.8D(1С) › Бортжурнал › Полезная статейка о дизеле.
  52. Volkswagen Passat Variant SyncroG60 стал 1,9 M-TDI › Бортжурнал › Приобретёный опыт по установке момента впрыска у дизеля.

Начало впрыска дизельного двигателя

Но попробуем пока разобрать ранний-поздний впрыск

Рабочий ход.
При впрыске топлива форсункой в сжатый поршнем до высокого давления и горячий воздух происходит
преобразование и подготовка топлива к возгоранию и сгоранию, то есть частичное его испарение, образование свободных радикалов в поверхностных слоях капель и в парáх. Наконец, через некоторый, очень малый промежуток времени оно вспыхивает и сгорает по мере поступления из форсунки, а продукты горения, расширяясь, двигают поршень вниз.
Впрыск топлива происходит чуть раньше момента достижения поршнем ВМТ вследствие некоторой инертности процесса горения.
Задержка начала возгорания в каждом конкретном дизельном двигателе зависит от конструкции и изменяется под действием давления впрыска, температуры топлива и сжатого воздуха, момента впрыска и др.. Сгорание топлива происходит столько времени, сколько длится подача порции топлива из форсунки + догорание. Вследствие этого рабочий процесс протекает при относительно постоянном давлении газов.

• 1. Процесс горения в длится столько времени, сколько требуется для впрыска данной порции топлива, но не дольше времени рабочего хода. Это приводит к тому, что рабочий процесс протекает при постоянном давлении.
• 2. Соотношение топливо/воздух в цилиндре может существенно отличаться от идеального, причем очень важно обеспечить избыток воздуха, так как пламя факела занимает небольшую часть объёма камеры сгорания и атмосфера в камере должна до последнего обеспечить нужное содержание кислорода. Если этого не происходит, возникает массивный выброс не сгоревших углеводородов с сажей.

Итак, в одном и том же двигателе, при одном и том же количестве поступившего кислорода делаем впрыск раньше,

Таким образом внешние признаки раннего впрыска

стук двигателя и беловатый (не сизый) дымок ( вода в виде пара, его много, т.к. кроме топлива и водород(Н2)содержащийся в воздухе сгорел с образованием воды)

Итак, в одном и том же двигателе, при одном и том же количестве поступившего кислорода делаем впрыск позже,

И выдержки читаем.
Теория поршневых
и комбинированных двигателей

Четвертое издание, переработанное и дополненное
Под редакцией А.С. ОРЛИНА, М.Г. КРУГЛОВА

«»Опыты показывают,что в этом случае продукты сгорания состоят из углекислого газа(СО2), окиси углерода(СО), водяного пара(Н2О), водорода(Н2), азота(N2) и его окислов, метана(СН4), и следов других углеводородов и кислорода(О2)»»

«» При дальнейшем уменьшении коэффициента a (коэффициент избытка воздуха) часть углерода совершенно не будет окисляться и в продуктах сгорания появится сажа.»»
«» Для ускорения испарения дизельного топлива необходимо обеспечить распыливание и прогрев капель. Это в значительной степени определяет момент начала впрыска, его продолжительность и давление топлива при впрыске»»

И из этой книжки
«Diesel Fuel-lnjection Systems
Unit Injector System/Unit Pump System
© Robert Bosch GmbH, 1999 P.O. Box 10 60 50,

D-70049 Stuttgart, Federal Republic Germany
© ЗАО «Легион-Автодата», перевод на русский язык, 2005

« « Угол опережения впрыска.

При небольших углах опережения впрыска,то есть при позднем впрыске, процесс сгорания протекает при низких температурах,что снижает эмиссию NOx, однако, если
угол опережения впрыска слишком мал,
то
увеличиваются выброс углеводородов СН и расход топлива, как и эмиссия сажи
на режимах больших нагрузок. При отклонении угла опережения впрыска от оптимального только на один градус п.к.в. эмиссия NOx может увеличиться на 5%. Отклонение угла на два градуса п.к.в. в сторону опережения впрыска может привести к увеличению максимального давления сгорания на 10 бар,
а отклонение угла на два градуса п.к.в. в сторону запаздывания приводит к увеличению температуры отработавших газов на 20“С. Такая высокая чувствительность требует очень точного регулирования угла
опережения впрыска. »»

вот эту книжку почитать нужно


Ну и собственно процесс горения,

Итак приступим к разбору полётов топлива из форсунки и ОГ(остатков горения) в цилиндре.

Ну и сажа,и ОГ со свистом полетели в трубу..у…у

Тёмный сажный дым с сизоватым оттенком в увеличенном объёме (см. выше)

Источник

Система впрыска дизельного двигателя

Система впрыска дизельного двигателя отличается от бензинового. В камере сгорания дизельного двигателя происходит воспламенение топлива. В бензиновом поджигается топливная смесь. Приготовленная, вне камеры сгорания и в определенном соотношении.

Поэтому воспламенение топлива дизельного двигателя имеет свои особенности. Основываются ни на физических свойствах воздуха и непосредственно дизельного топлива. Эти свойства определяют конструктивные особенности. Различных систем впрыска топлива.

Воспламенение дизельного топлива.

Поршень сжимает воздух в камере сгорания. Поршневая группа позволяет создать компрессию в камере сгорания выше 25 вар. Если это происходит. Температура сжимаемого воздуха поднимается до 700- 900 градусов по цельсию.

Нагрев воздуха в камере сгорания

Как происходит воспламенение.

Сжатый воздух нагрет до температуры 700-900 градусов. В момент когда поршень начинает подходить к верхней мертвой точке. Форсунка впрыскивает топливо под давлением. Топливо распыляется на мелкие капли. Капля от движения начинает испаряться и вокруг неё образуется облако пара. Температура воспламенения дизельного топлива составляет 350 градусов по Цельсию. То есть при температуре сжатого воздуха даже в 500 градусов. Пары топлива гарантированно самовоспламеняются. И от горения начинают расширяться. Создаётся давление в цилиндре. К моменту когда поршень подойдет к верхней мертвой точке. Топливо воспламенится все полностью и создаст максимальное давление в камере сгорания. Это давление и будет совершать работу двигателя. По мере удаления поршня от верхней мертвой точки топливо догорает. Создавая тем самым дополнительное давление на поршень.

Качество сгорания топлива во многом определяет давление с которым происходит впрыск топлива в камеру сгорания. Чем быстрее и эффективнее сгорает топливо тем выше создаваемое им давление. Чем выше давление распыления в форсунках. Тем капли мельче и быстрее движутся. Соответственно быстрее сгорают. Поэтому при одном и том же объёме камеры сгорания можно достичь повышение мощности двигателя за счет увеличения давления впрыска топлива.

Увеличение мощности двигателя

Современные системы впрыска позволяют поднять давление распыления до 2000 Вар. Выше создать давление не получается из за конструктивных особенностей двигателя внутреннего сгорания. То есть двигатель может не справиться с возникающим давлением и разрушится

Увеличение объёма воздуха в камере сгорания

Мощность двигателя можно повысить за счет увеличения объема воздуха поступающего в камеру сгорания. Так как воздух содержит кислород. И чем его больше тем интенсивнее происходит сгорание топлива. Цилиндр имеет рабочий объём, который изменить нельзя. Но можно в этот объём разместить большее количество воздуха. Если предварительно его сжать.

Происходит это с помощью турбокрмпрессора. Он создаёт избыточное давление поступающего в цилиндр воздуха. В результате его попадет большее количество. Если бы поршень закачивал воздух самостоятельно. Но в результате попадания воздуха в турбокомпрессор он нагревается от температуры турбины и от создаваемого им сжатия. Требуется его охлаждение.

При охлаждении движение молекул замедляется. В результате чего они начинают занимать меньший объём в пространстве. Технически охлаждение воздуха происходит путем применения радиатора. Его называют интеркулер. В интеркулере воздух охлаждается встречным потоком воздуха. При движении автомобиля. Сжатый воздух дополнительно охлаждается и подаётся в цилиндры. Но применение интеркулера возможно только при наличии турбокомпрессора. Потому что если применять его отдельно, он затруднит поступление воздуха в цилиндры. И повышения мощности не произойдет.

Топливо попавшее в цилиндр должно сгореть полностью. От этого зависит эффективная работа двигателя. Безусловно дополнительная порция воздуха помогает это сделать. Но не решает проблемы в целом. Двигатель работает в разных режимах. При увеличении оборотов. Уменьшается время на горение топлива. А не полное его сгорания снижает мощность работы. В связи с уменьшением возникающего давления на поршень. Автомобили несут на себе разную нагрузку. При одних и тех же оборотах двигателя требуется разное количество топлива для движения автомобиля. Поэтому постоянно разрабатываются различные системы впрыска топлива. Которые пытаются более точно регулировать объём поступающего топлива в цилиндры. При работе на разных режимах работы двигателя.

Классическая система впрыска топлива.

Основана на использовании топливного насоса высокого давления. Он распределяет давление топлива по цилиндрам. В зависимости от схемы работы данного двигателя. Полость ТНВД наполняется топливом при помощи подкачивающего насоса. Который расположен на корпусе ТНВД и приводится в действие от вала ТНВД. Подкачивающий насос закачивает топливо из бака Направляет его в фильтры тонкой очистки. И затем топливо попадает в ТНВД. Полость топливного насоса высоко давления наполняется. В ней находятся плунжерные пары. Они захватывают топливо. И создают высокое давление. Которое и подаётся к форсункам. Форсунка устроена таким образом. Что накапливает получаемое давление от плунжера. И при достижении нужного давления открывает каналы через которые распыляется топливо. Это классическая схема. Насос позволяет менять частоту вращения коленчатого вала двигателя. Путем изменения количества подаваемого топлива в цилиндры.

Кроме этого некоторые насосы имеют возможность изменять угол опережения зажигания. За счет применения центробежных грузиков. При увеличении числа оборотов двигателя происходит смещение вала насоса относительно привода. Эта система рассчитывается на средние показатели работы двигателя. На различных предполагаемых режимах работы. И не может влиять на не предусмотренные нагрузки. Такие как уменьшение или увеличении перевозимого груза. Спуск подъем. Дорожное покрытие. Количество топлива будет соответствовать только количеств требуемых оборотов двигателя.

Соответственно топлива будет либо не хватать. Либо подаваться избыточное количество. В результате не достигается полное сгорание топлива в цилиндрах, и как результат низкий коэффициент полезного действия. Влияющий отрицательно на расход топлива и мощность двигателя и показатели экологии. Требования предъявляемые к экологии в конечном итоге оказались главным фактором эволюции системы впрыска. Чем топливо лучше сгорает в камере сгорания. Тем образуется меньше вредных выбросов окружающую среду. Соответственно чем эффективнее сгорание топлива лучше характеристики двигателя. Конструктора длительное время усовершенствовали систему впрыска дизельного топлива.

Современная система впрыска дизельного двигателя способна производить подачу впрыска в несколько этапов. Как производить производить предварительный поджог топлива. Предварительная подача топлива называется пилотным впрыском. Когда поршень проходит отметку угла опережения зажигания происходит предварительный впрыск топлива. Небольшое количество топлива загорается. Затем даётся еще какое то количество топлива.

Таких предварительных впрысков может достигать до 5. После пилотного впрыска происходит основной впрыск. Уже в горящее топливо. Основное количество топлива быстрее загорается и сгорает более эффективно. В результате двигатель работает плавно без резких ударов. А более полное сгорание топлива обеспечивает низкий уровень выброса вредных веществ и повышение мощностных характеристик двигателя. Подобный впрыск может обеспечить только система Комон рейл

Система Комон рейл

Управление впрыском топлива происходит при помощи электронного блока управления. Количество подаваемого топлива учитывается от числа оборотов двигателя, скорости движения и возникающих нагрузок в процессе движения автомобиля. Система впрыска дизельного двигателя комон рейл позволят достичь максимально возможного давления впрыска топлива. Поэтому она и получила широкое распространение на современных двигателях.

Система common rail принцип работы

Насос создаёт высокое давление не для каждой форсунки в отдельности а для всех сразу. Давление аккумулируется в расширительной трубке рейле. Все форсунки соединены с рейлом. Впрыск топлива осуществляется за счет работы электро магнитного клапана в форсунках. Управление клапанами осуществляет электронный блок. На основании данных которые он получает от датчиков.

В зависимости от полученных данных ЭБУ определяет время открытия и закрытия форсунок. То есть количество необходимого топлива. Угол опережения зажигания.

Достигается максимальное сгорание топлива на разных режимах работы двигателя.

Устройство системы комон рейл

Система комон рейл состоит из элементов низкого и высокого давления топлива.

Элементы низкого давления обеспечивают подачу топлива до насоса высокого давления. Низкое давление является составной частью нагнетания высокого. То есть оно должно иметь определённую величину. Чтобы насос высокого давления эффективно работал.

В систему низкого давления входят топливоподводящие трубки. Фильтра грубой и тонкой очистки топлива. И как правило шестеренный насос низкого давления.

Элементы высокого давления производят нагнетание рабочего давления топлива в камере сгорания.

В связи с тем что система подводит давление к форсункам одновременно. Затрудняется поиск неисправностей. Если одна форсунка вышла из строя. Например перестала сдерживать рабочее давление. Двигатель работать не сможет. Потеря давления в одной форсунке не позволит создать давление во всей системе.

Неплотное соединение между элементами высокого давления так же позволит создать давление нагнетания.

Например очень часто форсунки подключаются к рейл при помощи удлинителей(морковок) Форсунка имеет конусное отверстие. И в это отверстие прилегает конус удлинителя. Если в соединении трубки удлинителя и форсунки будет повреждение. И трубка не плотно приляжет к форсунке. Давление в системе уже не создаться. И двигатель не заведется. Все соединения должны быть надёжными и предельно прочными. Попадание малейших частиц грязи приведет к неисправности. Иногда требуется ремонт форсунок. Их снимают везут в мастерскую. Соединительные трубки остаются в пыли и грязи ждать форсунки. При установке отремонтированных форсунок их прикручивают как они и лежали. Мотор естественно не заводится из за попавшей грязи в форсунки. А винить начинают мастеров. Диагностика неисправности системы впрыска комон рейл производится при помощи тестера. Который считывает коды ошибок выдаваемых электронным блоком. Но этих данных бывает недостаточно для определения истинной причины неисправности.

Система впрыска дизельного двигателя подвергается постоянной эволюции. Связано это с требованиями экологии. По уменьшению вредных выбросов отработанных газов. А это в свою очередь и есть путь к повышению эффективности работы двигателя и экономии топлива.

Источник

Начало впрыска дизельного двигателя

k-38.jpg k-39.jpg

Все эти проблемы возникают довольно редко и легко вычисляются. Оценить состояние топливного фильтра можно легко и однозначно, если перевести двигатель на внешнее питание, то есть под капот двигателя поместить пластиковую бутылку с дизельным топливом, а трубки питания ТНВД и «обратки» отсоединить от своих штатных мест и опустить в эту бутылку. После этого запускаем двигатель и проверяем его работу. Можно даже проехать несколько километров. Если в поведении двигателя ничего не изменилось, значит, топливный фильтр и все, что расположено дальше, к топливному баку, исправно. Кстати, если в бутылку с топливом добавить 30-50% любого моторного масла, то ТНВД будет вынужден подавать более густое топливо (смесь солярки с маслом). И если в ТНВД есть какой-то износ (например, плунжерных пар), износ этот как бы станет сказываться в меньшей степени, и работа двигателя станет лучше. Например, двигатель в горячем состоянии запускается очень тяжело. Причиной этого часто является недостаточный объем подаваемого топлива вследствие износа главной плунжерной пары. И если с густым топливом этот дефект (тяжелый запуск) почти исчезнет, можно с уверенностью снимать ТНВД и менять ему изношенную пару. Хотя в этом случае в ТНВД обычно надо менять все, и его проще выкинуть, чем чинить и потом регулировать. Впрочем, об этом уже выше писалось.

Состояние редукционного клапана (может находиться в заклиненном состоянии) и питающего насоса, можно оценить, используя насос ручной подкачки топлива. Если работа двигателя изменится после того, как вы при работающем двигателе начнете качать ручным насосом, т.е. начнете вручную поднимать давление в корпусе ТНВД, значит или клапан, или насос неисправен. Редукционный клапан легко вывернуть, не снимая ТНВД, и проверить. Только на большинстве дизельных двигателей фирмы « Mitsubishi » для этого приходится тонким зубилом удалять уголок кронштейна, после чего головка редукционного клапана становится доступной для специального ключа. Кстати, этот редукционный клапан можно вывернуть и с помощью длинного бородка (зубильца), не используя ключ. (РИС.40)

k-40.jpg

Рис. 40. Поднять давление в корпусе ТНВД можно путем осаживания заглушки (1) редукционного клапана (2) тонким бородком. В результате этих ударов пружина (3) сильнее надавит на плунжер (4) и тот перекроет отверстие для сброса топлива (5). Чтобы вернуть заглушку обратно (снизить давление в корпусе ТНВД), надо сильнее пробить заглушку вниз, чтобы она сжала пружину полностью и надавила на плунжер таким образом, чтобы вытолкнуть стопор (6). После этого и плунжер и пружина легко вываливаются. Дальше надо перевернуть редукционный клапан и тонким бородком пробить заглушку обратно. Далее все собрать на место и повторить попытку регулировки давления.

Там все уплотнения сделаны на резиновых колечках (ториках) и сильной затяжки не требуется. Если этот клапан целый, его плунжер не заклинен в открытом положении, то следует подозревать неисправность питающего насоса. При условии, что при подкачке топлива работа двигателя становится ровнее. Правда, если из линии перелива (обратки) при работе двигателя льется топливо с пузырьками воздуха, то в первую очередь надо устранить подсос воздуха. Потому что если будет подсос воздуха, то сложно создать требуемое давление в ТНВД, даже с полостью исправным питающим насосом. Но проблемы с подсосом воздухом – это отдельная тема. Тут только заметим, что подсос воздуха, даже при внешнем питании, т.е. когда канистра с топливом находится выше ТНВД, возможен через сальник ТНВД и через не плотности центральной заглушки на чугунной части ТНВД. Эта заглушка используется для точной установки ТНВД по углу подачи топлива (ее вывинчивают, устанавливают микрометрическую головку и меряют ход плунжера, эта процедура описана почти во всех руководствах по ремонту ТНВД). При полностью исправном ТНВД, даже если он был ранее завоздушен, через 10 минут работы двигателя в линии перелива пузырьков воздуха нет.

Итак, угол опережения впрыска зависит от оборотов двигателя. Для экономии топлива, достижения высокой мощности и в плане экологии будет лучше, если этот угол опережения будет изменяться с учетом и других условий работы двигателя, таких, как величина нагрузки на двигатель, давление наддува, температура и др. Но полностью учет всех этих условий возможен только у ТНВД с электронным управлением. У обычных механических учитывается только давление топлива в корпусе ТНВД и, на более современных агрегатах, температура охлаждающей жидкости двигателя. Поршень в нижней части ТНВД перемещается в зависимости от давления топлива и через специальный стальной «палец» немного разворачивает профильную шайбу (эту же шайбу принудительно поворачивает поводок от механизма прогревного устройства). В результате волновой выступ шайбы будет раньше набегать на плунжер, и тот раньше начнет свое движение. Вся эта система была рассчитана и сделана на заводе и худо-бедно справлялась со своими обязанностями. До тех пор, пока не начался интенсивный износ. Интенсивным он стал потому, что в ТНВД стало поступать топливо без смазки (наше «сухое» зимнее топливо, так же как и керосин, почти не содержит тяжелых фракций, которые и обеспечивают смазку всех трущихся деталей), топливо с воздухом и просто грязное топливо (с абразивом). Впрочем, обычная старость тоже делает свое дело. В результате выступ на шайбе начинает чуть позже набегать на плунжер и тот в свою очередь начинает чуть позже свое движение. Другими словами начинается более поздний впрыск. Начало этого явления выглядит так. Двигатель работает на холостом ходу и, вследствие разного износа форсунок, немного трясется. Добавляем ему оборотов. Примерно на 1000 об/мин двигатель перестает трястись и как бы замирает – работает ровненько – ровненько. Еще повышаем обороты. И вдруг в диапазоне 1500 – 2000 об/мин появляются вздрагивания. Эти вздрагивания (тряска) могут появляться как при плавном, но интенсивном, так и при медленном повышении оборотов. Во время тряски из выхлопной трубы идет синий дым. Когда двигатель полностью прогреется, тряска в районе 1500 – 2000 об/мин исчезает. Это в самом начале развития дефекта. Потом тряска не пропадает и после прогрева двигателя. Точно такая же тряска появляется, если поднять давление впрыска на форсунках. В этом случае, если ТНВД изношен, тоже получится поздний впрыск топлива. Избавляемся мы от этого явления, повернув корпус ТНВД на более ранний впрыск. Иногда приходится доворачивать ТНВД почти до упора. Но прежде чем это сделать, послушайте работу двигателя. Когда у дизельного двигателя слишком ранний впрыск, он начинает работать более жестко (еще говорят, что у него стучат клапана). И если вы убедитесь, что оборотов за 50-100 до начала тряски эта жесткая составляющая в акустическом фоне дизеля исчезла, значит точно надо поворачивать ТНВД. Тут следует заметить, что у изношенных дизелей зазор поршень – цилиндр очень большой и поэтому они начинают работать жестко даже при абсолютно правильном угле опережения впрыска. Использование для установки опережения впрыска стробоскопа в нашем случае не совсем оправдано. Не будем говорить о том, что стробоскопы более уверенно ловят своим микрофоном стук уже сильно изношенной форсунки. Если же форсунка в приличном состоянии, а трубка подачи топлива закреплена штатно, лампа стробоскопа, как правило, дает сбои. Установить с помощью стробоскопа можно опережение впрыска при холостом ходе. Именно это опережение дается в технической документации. Но износ в ТНВД неравномерный. И очень часто установив опережение по метке с помощью стробоскопа при оборотах холостого хода, мы не избавляемся от тряски на оборотах, вызванной поздней подачей топлива. Поэтому мы и рекомендуем выставлять опережение на слух. При том износе, который имеют эксплуатируемые нами дизеля, это более приемлемый способ. Ведь только таким образом можно скомпенсировать поздний впрыск, вызванный низким давлением топлива в корпусе ТНВД из-за износа питающего насоса. Это почти то же самое, что и регулировка опережения зажигания у бензинок. Вы можете с помощью приборов установить опережение зажигания только при оборотах холостого хода (а другого и не предлагается руководствами по ремонту), но из-за неисправности, например, центробежного регулятора, машина ехать не будет. Ясно дело, что его надо чинить или менять. Но можно, повернув трамблер, выставить на слух приемлемый угол опережения зажигания. Разница только в том, что у бензиновых двигателей критерием правильности установки опережения зажигания без использования приборов будут детонационные стуки и мощность двигателя, а у дизелей – тряска, дымность и стуки в двигателе.

Читайте также:  Ремонт автомобилей в автомастерской

Выше уже упоминалось, что большинство проблем ТНВД происходят из-за всяческого рода утечек и протечек. Износился, например, плунжер, возникла протечка, вот и не создает он давление. А если заменить топливо более густым? Тогда повышенные зазоры в сопрягаемых деталях как бы станут меньше. И ТНВД заработает так, будто у него и нет никакого износа. Сделать топливо густым очень просто. Добавьте, как говорилось выше, в него любого моторного масла. Конечно, ездить так не хочется – слишком дорогое топливо получается (да и хлопотно это, постоянно приготавливать густое топливо). Но для проверки состояние ТНВД (как и для успешной продажи сильно подержанного автомобиля на базаре) этот прием полезен. В холодное время года мы, из-за природной лени, для того, чтобы сделать топливо густым, просто охлаждаем ТНВД. Например, приходит машина с дизельным двигателем с жалобой на то, что плохо заводится, если постоит минут пять, но двигатель еще горячий. Мы заводим эту машину (действительно, иногда приходится крутить стартером секунд 30), прогреваем ее еще минут 10 и глушим. После этого открываем ей капот и снегом охлаждаем ТНВД. В течение тех же 5 минут. Если после этой операции двигатель запустится лучше, чем в первый раз, уже можно говорить о сильном износе ТНВД. Конечно, оба эти трюка (с густым топливом и с охлаждением ТНВД) не описываются в заводских руководствах по ремонту двигателя и, поэтому их нельзя считать очень уж научными. В тех руководствах измеряется объем подачи топлива при запуске (есть в технических данных такой параметр – объем подачи при скорости вращения 200 об/мин) и проверить этот параметр в домашних условиях тоже несложно. Для этого надо выкрутить все свечи накаливания и снять трубку с одной форсунки. Потом на эту трубку надеть корпус одноразового медицинского шприца и стартером покрутить двигатель. Естественно, считая «пшики». 200 «пшиков», это, конечно, много. Достаточно и 50, а потом полученный результат сравнить с техническими данными. При этом можно считать, что объем впрыска при 200 об/мин для всех японских дизелей, если у них одинаковый объем, будет один и тот же. Если объем вашего двигателя чуть другой, несложно составить пропорцию с объемом дизеля, данные на который у вас имеются. Все это мы тоже проделываем, когда горячий двигатель плохо заводится, хотя, как следует из практики, можно все проверить и проще. Используя снег и моторное масло. Другими словами, если работа ТНВД с густым топливом становится более приемлемой, надо проверять объем впрыска. Лучше, конечно, это все сделать на стенде (там можно провести проверить все режимы работы у ТНВД), но в режиме запуска (т.е. при 200 об/мин) проверку можно сделать и в гараже.

Итак, если у дизельного двигателя есть тряска в районе 1500 – 2000 об/мин, сопровождаемая к тому же синим цветом выхлопных газов, надо ремонтировать топливную систему. И в частности, сделать впрыск топлива раньше. Для этого в простейшем случае надо повернуть ТНВД на более ранний впрыск.

Корниенко Сергей, г. Владивосток, диагност
© Легион-Автодата

Источник

Впрыск топлива в дизельном двигателе и его регулировка

В такте впуска дизельный двигатель впускает только воздух. В такте сжатия этот воздух нагревается до температуры настолько высокой, что дизельное топливо, впрыснутое в цилиндр в конце такта сжатия, воспламеняется самостоятельно. Количество топлива в двигателе дозируется с помощью топливного насоса высокого давления (ТНВД). Топливо впрыскивается под высоким давлением через форсунку в камеру сгорания.

Впрыск топлива должен происходить следующим образом:

Схема системы топливоподачи дизельного двигателя

Рис. Схема системы топливоподачи дизельного двигателя:
1. Топливный бак; 2. Топливоподкачивающий насос (топливный насос низкого давления); 3. Топливный фильтр; 4. Рядный ТНВД; 5. Устройство опережения момента впрыска; 6. Регулятор; 7. Держатель форсунки с форсункой; 8. Возвратный топливопровод; 9. Накальная свеча с закрытым элементом; 10. Аккумуляторная батарея; 11. Выключатель предварительного накала и стартера; 12. Блок управления предварительным накалом.

ТНВД и регулятор, соединенные с управляющей (контрольной) зубчатой рейкой являются ответственными за то, чтобы указанные условия выполнялись. Количество топлива, впрыснутого за один ход плунжера ТНВД, примерно пропорционально крутящему моменту двигателя.

Если на двигателе используется механический (центробежный) регулятор числа оборотов, то рейка управления соединяется с педалью акселератора («газа») через регулятор.

Замкнутый контур управления для механического регулятора

Рис. Замкнутый контур управления для механического регулятора:
1. Дизельный двигатель; 2. Рядный ТНВД; 3. Регулятор; 4. Обороты двигателя; 5. Количество впрыскиваемого топлива; 6. Педаль акселератора; 7. Ход управляющей рейки; 8. Давление подаваемого воздуха; 9. Желаемое число оборотов; 10. Атмосферное давление; 11. Управление крутящим моментом; 12. Подача при полной нагрузке; 13. Начальное количество.

У электронного регулятора (EDC) педаль акселератора оснащена датчиком, соединенным с электронным блоком управления (ЭБУ или ECU). Когда водитель нажимает на педаль газа, то перемещение преобразуется в соответствующий ход рейки с учетом оборотов двигателя в данный момент времени.

Почему дизельному двигателю нужен регулятор?

У дизельного двигателя не существует положения управляющей рейки, которое бы позволило дизельному двигателю точно поддерживать свои обороты без помощи регулятора. На холостом ходу, к примеру, без регулятора числа оборотов, обороты двигателя будут либо падать, пока двигатель не остановится, либо будут продолжать увеличиваться, что, в конце концов, приведет к саморазрушению двигателя.

Последняя возможность обязана тому, что дизель работает с избытком воздуха, что означает отсутствие эффективного дросселирования поступающей в двигатель смеси при возрастании его оборотов.

К примеру, если холодный двигатель был заведен и остался работать на холостом ходу, тогда как продолжает впрыскиваться начальное количество топлива, то характерное трение вскоре начнет снижаться. То же самое относится к нагрузке двигателя от приводимых от него агрегатов, таких как генератор, воздушный компрессор, ТНВД и т.д. Это означает, что если положение управляющей реики осталось неизменным и рейка не втягивалась для уменьшения количества подаваемого топлива (как сделал бы регулятор), то обороты двигателя будут возрастать все больше и больше (из-за указанного выше падения трения), пока они не достигнут точки саморазрушения. Другими словами, является обязательным, чтобы дизель был оснащен регулятором числа оборотов. В настоящее время для рядных ТНВД используются либо механические (центробежные) регуляторы либо система электронного управления дизельным двигателем (EDC).

Пневматические регуляторы, управляемые давлением впускного коллектора устанавливались ранее на небольшие ТНВД. От них пришлось отказаться в результате возросших требований к точности регулирования и к работе регулятора.

Работа регулятора

Нет сомнений, что когда к двигателю приложена нагрузка, ТНВД должен всегда обеспечивать двигатель необходимым количеством топлива. Все рядные ТНВД имеют отдельную плунжерную пару (плунжер (3) и гильза (1)), называемую еще нагнетательной секцией (элементом), для каждого цилиндра двигателя.

Плунжер двигается в направлении подачи топлива с помощью кулачкового вала, приводимого в движение от двигателя, и возвращается обратно под действием возвратной пружины. Так как ход плунжера не может быть изменен, то количество нагнетаемого топлива может быть отрегулировано только путем изменения эффективного (активного) хода плунжера.

Работа регулятора

Плунжеры снабжены наклонным спиральным вырезом (каналом), так что требуемый эффективный ход подбирается путем поворота плунжера. Поворот осуществляется с помощью управляющей зубчатой рейки (5), которая находится в зацеплении с плунжером и сама двигается продольно с помощью регулятора. Вращение плунжера перемещает спираль (вырез) (4) для управления моментом окончания подачи (известного также как сброс или открывание отверстия в гильзе) и количеством подачи. Подача начинается в тот момент, когда верхний край плунжера закрывает входное отверстие (2) в стенке гильзы.

В случае максимальной подачи (с) сброс не происходит вплоть до максимального эффективного хода плунжера, другими словами, с максимально возможным количеством подаваемого топлива. При частичной подаче (Ь) сброс происходит раньше в зависимости от положения плунжера при повороте. В конечном положении, что требуется для нулевой подачи (а), т.е. в момент, когда двигатель должен быть остановлен, продольный паз плунжера расположен прямо напротив входного отверстия. Это означает, что нагнетательная камера над плунжером соединяется с топливной магистралью в течение всего хода плунжера, т.е. топливо не подается.

Существует несколько различных конфигураций спирали.

В случае плунжера только с нижней спиралью (вырезом) подача топлива начинается в одинаковой точке хода плунжера вверх, тогда как конец подачи происходит раньше или позже в зависимости от поворота плунжера. Когда плунжер имеет верхнюю спираль (вырез), то может изменяться начало подачи. Имеются также плунжеры, снабженные как верхней, так и нижней.

Снижение оборотов регулятора

Каждый двигатель имеет кривую (характеристику) крутящего момента в соответствии с его максимальной отдачей мощности. Каждое значение оборотов двигателя связано с данным максимальным крутящим моментом. Если нагрузка на двигатель снимается при данных оборотах двигателя, а управляющая рейка соответствующим образом не регулируется, то обороты двигателя могут лишь увеличиваться в пределах управляемого диапазона до числа, определенного заводом-изготовителем двигателя (т.е. от nv — оборотов при полной нагрузке до n1 — низких оборотов холостого хода). Увеличение оборотов двигателя пропорционально изменению нагрузки, т.е. чем больше уменьшение нагрузки двигателя, тем больше увеличение оборотов двигателя.

Этот эффект известен как эффект снижения оборотов и относится к регуляторам с характеристикой снижения оборотов. Снижение оборотов регулятора в основном относится к максимальным оборотам при полной нагрузке (нормированные обороты) и подсчитывается следующим образом:

б = (n10-nv0) / nv0 или б (n10-nv0) / nv0 * 100%

где б — коэффициент снижения оборотов, его называют также просто снижением оборотов); n10 — повышенных оборотов холостого хода (максимальных); nv0 — число максимальных оборотов при полной нагрузке.

Говоря в общем, достаточно большое снижение оборотов увеличивает стабильность общего контура (цепи) управления (регулятор, двигатель и приводимый им в движение агрегат или автомобиль). С другой стороны, снижение оборотов ограничивается условиями работы. Для примера: примерно от 0 до 5% — для двигателей генераторных установок и примерно от 6 до 15% — для автомобильных двигателей.

Обороты при полной нагрузке с соответствующим управлением оборотами холостого хода

Рис. Обороты при полной нагрузке с соответствующим управлением оборотами холостого хода:
1. Крутящий момент Md; 2. Обороты двигателя.

Увеличение оборотов для различных снижений оборотов

Рис. Увеличение оборотов для различных снижений оборотов:
1. Крутящий момент Md; 2. Обороты двигателя; слева — малое снижение оборотов; справа — большое снижение оборотов.

Снижение оборотов регулятора R Q V

Рис. Снижение оборотов регулятора R Q V:
1. Снижение оборотов; 2. Обороты ТНВД

На рисунках введены следующие обозначения:

На рисунке показана практическая иллюстрация эффектов снижения оборотов. При установке требуемых оборотов двигателя на фиксированной величине, действительное число оборотов двигателя изменяется в пределах области снижения оборотов, когда нагрузка двигателя изменяется.

Крутящий момент Md

Рис. 1. Крутящий момент Md; 2. Обороты двигателя, n; 3. Диапазон снижения оборотов; 4. Максимальная разница в оборотах; 5. Реальные обороты; 6. Полная нагрузка; 7. Частичная нагрузка; 8. Отсутствие нагрузки; 9. Время t; 10. Установочные обороты.

Функции регулятора

Основной задачей каждого регулятора числа оборотов является ограничение максимальных оборотов двигателя. Другими словами, регулятор должен обеспечивать, чтобы обороты двигателя никогда не превышали максимальных значений, предусмотренных заводом-изготовителем. В зависимости от его типа, регулятор может иметь и другие функции, такие как поддержание определенных оборотов двигателя, например, на холостом ходу или поддержание диапазона оборотов между низкими и высокими оборотами холостого хода (максимальными). Регулятор может также иметь другие функции и функции, выполняемые электронным регулятором (EDC), являются гораздо более широкими, чем функции у механического (центробежного) регулятора.

Различные требования, предъявляемые к регуляторам, стали причиной развития различных типов регуляторов, перечисленных ниже:
регуляторы максимальных оборотов. Эти регуляторы разработаны только для ограничения максимальных оборотов двигателя;
регуляторы минимальных и максимальных оборотов.

Кроме максимальных оборотов эти регуляторы также управляют низкими оборотами холостого хода, регуляторы изменяемых оборотов. Эти регуляторы кроме максимальных оборотов и низких оборотов холостого хода также управляют оборотами в промежуточной области, комбинированные регуляторы. Они представляют собой комбинацию регулятора максимальных и минимальных оборотов и регулятора изменяемых оборотов, регуляторы для стационарных силовых установок. Они разработаны для двигателей генераторных установок в соответствии с немецким стандартом DIN 6280. Кроме своей основной задачи, этот регулятор также имеет несколько других функций управления. Они включают в себя автоматическую подачу и отсечку дополнительного топлива, требуемого для запуска и изменение подачи топлива при полной нагрузке в зависимости от оборотов двигателя (управление крутящим моментом), от давления нагнетаемого воздуха или атмосферного давления. Для выполнения этих задач требуется дополнительное оборудование.

Регулировка максимальных оборотов

Регулировка максимальных оборотов

Рис. Регулировка максимальных оборотов:
1. Ход управляющей рейки; 2. Остановка; 3. Полная нагрузка; 4. Контролируемая область; 5. Полная нагрузка; 6. Без нагрузки; 7. Обороты двигателя.

В зависимости от снижения оборотов, когда нагрузка на двигатель убирается, то максимальные обороты при полной нагрузке nv0 не достигают величины n10 (повышенные обороты холостого хода — максимальные). Регулятор подгоняет их до этого требуемого значения, передвигая управляющую рейку в направлении остановки (прекращая подачу топлива). Управление (регулировка) в области между nvo и пю называется регулировкой максимальных оборотов. Чем выше снижение оборотов, тем выше увеличение оборотов между nvo и n10.

Регулировка промежуточных оборотов

Когда требуется специальное применение (например, в автомобилях с коробкой отбора мощности), то регулятор может поддерживать обороты двигателя в пределах требуемой области (2) между оборотами холостого хода и повышенными оборотами холостого хода (максимальными), (1 — ход управляющей рейки).

Регулировка промежуточных оборотов

Рис. Регулировка промежуточных оборотов

Обороты двигателя (5), таким образом, колеблются только в пределах рабочей области между nv. (полная нагрузка-3) и n1 (без нагрузки-4) в зависимости от нагрузки.

Управление низкими оборотами холостого хода

Регулирование может также иметь место и в самой низкой области оборотов двигателя.

Управление низкими оборотами холостого хода

Рис. Управление низкими оборотами холостого хода: 1. Ход управляющей рейки; 2. Область управления; 3. Полная нагрузка; 4. Без нагрузки; 5. Обороты двигателя.

После запуска холодного двигателя, когда управляющая рейка перемещается из пускового положения в положение В, сопротивление двигателя на трение остается достаточно высоким, Это значит, что количество подаваемого топлива для устойчивой работы двигателя будет немного выше того, которое обычно соответствует регулировочной точке L для низких оборотов холостого хода, а обороты двигателя будут немного ниже. При прогреве уменьшение трения будет причиной увеличения оборотов двигателя, и управляющая рейка передвинется обратно в положение L. Это установка низких оборотов холостого хода для двигателя, находящегося при рабочей температуре.

Управление крутящим моментом

Управление крутящим моментом используется для обеспечения полного использования воздуха для сгорания, поступившего в цилиндр двигателя. В таком случае процесс управления не актуален, но на регулятор накладывается более одной функции регулировки. Он разработан для количества топлива, подаваемого для режима полной нагрузки, т.е. для максимального количества топлива, впрыскиваемого в области нагрузок двигателя и которое может сгореть без чрезмерного дымообразования. В общем, потребность в топливе «атмосферного» (т.е. без наддува) дизельного двигателя снижается с ростом оборотов двигателя (уменьшенная относительная скорость воздушного потока, ограничения по температуре, изменяемое смесеобразование). С другой стороны, при постоянном положении управляющей рейки количество топлива, впрыскиваемого ТНВД, увеличивается в определенной области, когда обороты возрастают. Это происходит из-за эффекта дросселирования у отверстия для сброса (сливного отверстия) плунжерной пары ТНВД. Однако впрыскивание избыточного топлива приводит к выбросам дыма и перегреву двигателя. Это означает, что количество впрыскиваемого топлива должно быть адаптировано к потребности двигателя в топливе.

Потребность двигателя в топливе

Рис. а) Потребность двигателя в топливе; б) Подача топлива в режиме полной нагрузки без управления крутящим моментом; с) Подача топлива в режиме полной нагрузки с управлением крутящим моментом; 1. Количество подаваемого топлива; 2. Начало управления крутящим моментом; 3. Конец управления крутящим моментом; 4. Область управления крутящим моментом; 5. Обороты двигателя.

У регуляторов числа оборотов с управлением крутящим моментом управляющая рейка передвигается в области управления крутящим моментом на фиксированную величину (так называемый ход управления крутящим моментом) в направлении остановки (отсечки подачи топлива). Таким образом, когда обороты возрастают (от n1, до n2), количество подаваемого топлива уменьшается (принудительное управление крутящим моментом или управление крутящим моментом в направлении управления). Когда обороты двигателя падают (с n2 до n1), подача увеличивается.

Управление ходом рейки

Рис. 1. Управление ходом рейки; 2. Начало управления крутящим моментом; 3. Конец управления крутящим моментом; 4. Ход управления крутящим моментом; 5. Обороты двигателя.

Конструкция и расположение приборов для управления крутящим моментом изменяются в соответствии с типом регулятора. Кривая крутящего момента с и без управления крутящим моментом показана на рисунке. Максимальный крутящий момент достигается во всем диапазоне показанных оборотов без превышения пределов дымности.

Крутящий момент двигателя Md

Рис. 1. Крутящий момент двигателя Md; 2. Начало управления крутящим моментом; 3. Конец управления крутящим моментом; 4. С управлением крутящим моментом; 5. Без управления крутящим моментом; 6. Обороты двигателя.

На двигателях, оснащенных турбонагнетателем с приводом от выхлопных газов, имеющих высокий коэффициент наддува, потребность в топливе на режиме полной нагрузки в областях низких оборотов возрастает настолько, что стандартное увеличение подачи топлива от ТНВД становится недостаточной. В таких случаях управление крутящим моментом должно регулироваться в зависимости от оборотов двигателя или давления нагнетаемого воздуха.

В зависимости от преобладающих условия это осуществляется с использованием либо регулятора, либо компенсатора давления во впускном коллекторе (LDA) или обоих этих устройств.

Характеристики подачи топлива

Характеристики подачи топлива

Рис. Характеристики подачи топлива:
а) Потребность двигателя в топливе; б) Подача в режиме полной нагрузки без управления крутящим моментом; с) Подача в режиме полной нагрузки с управлением крутящим моментом; c1 — отрицательное (свободное) управление крутящим моментом; с2 — принудительное (положительное) управление крутящим моментом; 1. Количество подаваемого топлива; 2. Управление крутящим моментом; 3. Отрицательное; 4. Положительное; 5. Обороты двигателя.

Источник

Электронная система впрыска дизельного двигателя

Дизельный двигатель, который был назван по имени своего изобретателя, имеет главного конкурента – карбюраторный двигатель. Дизельный при своем функционировании всасывает в цилиндры воздух атмосферы. Здесь, в цилиндрах, происходит его плотное сжимание, и температура становится выше, чем 700 градусов, а давление и того превосходит 900 атмосфер. Этих показателей достаточно, чтобы дизельное топливо стало воспламеняться. Благодаря этому в дизеле не нужно использовать свечи зажигания, которые часто используются в карбюраторах.

Электронная система впрыска дизельного двигателя

Для того чтобы дизель отлично функционировал, необходим впрыск дизельного топлива в электронном виде. Электронная система впрыска дизельного двигателя имеет множества преимуществ. Во-первых, здесь на электронном уровне контролируется топливо, благодаря чему снижается удельный расход. Во-вторых, здесь встроена система самостоятельной диагностики, благодаря чему все неисправности быстро выявляются и устраняются. В-третьи, и помощью электроники происходит самостоятельное регулирование оборотов холостого хода, из-за этого удается ограничить число оборотов двигателя.

В двигателе дизеля воздух появляется через фильтры воздушные из атмосферы. Если в автомобиле есть турбокомпрессор, то именно он осуществляет сжатие воздуха, который дальше переходит в интеркулер. Здесь происходит его охлаждение, благодаря чему цилиндры лучше заполняются нагнетаемым воздухом.

Электронная система впрыска дизельного двигателя

Здесь устанавливаются преобразователи окислительные и каталитические, которые снижают возможность загрязнения вредными веществами. Функционирование электронной системы впрыска дизельного двигателя осуществляется также посредством поступление горючего в камеру сгорания. Горючее проходит через вихревые камеры, они горючее завихряют, чтобы позволяет лучше смешиваться с воздухом.

Блок управления дизелем необходим для того чтобы управлять прогревом двигателя в холодном состоянии. Момент впрыска смещается, если двигатель не прогрет. К тому же, управляются свечи накаливания, которые есть в каждом цилиндре. Они включаются еще до того, как запускается двигатель, и срабатывают сразу после того, как двигатель проворачивается стартер. Именно свечи накаливания осуществляют запуск двигателя в холодном состоянии. Холодный двигатель запускается после того, как загорится сигнальная лампа.

Источник

Запоздалее или раннее зажигание – как определить, признаки на дизеле, симптомы на инжекторе, газу и прочие варианты » АвтоНоватор

Диагностика системы зажигания

Важность правильной регулировки зажигания

Верность выставленного зажигания на карбюраторных двигателях осуществляется при помощи стробоскопа

От характера установки зажигания зависит качество и экономичность работы двигателя. Поэтому именно установка зажигания – важное действие, которое позволяет настроить силовой агрегат. При неправильной установке зажигания, как в сторону увеличения угла опережения, так и в сторону уменьшения, двигатель сразу ощущает негативное воздействие.

Именно поэтому к настройке момента зажигания следует подходить ответственно и очень внимательно.

Принцип работы зажигания

Бензиновый двигатель имеет определённые факторы, которые влияют на качество и время подачи искры, необходимой для воспламенения горючей смеси. Эти факторы объединяются в отдельный механизм, получивший название – трамблёр, его ещё иногда называют распределитель-прерыватель.

Классическая схема зажигания

Он установлен в области блока цилиндров, вал трамблёра приводится в движение за счёт распредвала мотора. На валу трамблёра расположены кулачки, они в необходимый момент размыкают цепь, далее происходит образование искры.

Главный недостаток трамблёра – это склонность к механическому износу, в результате которого изменяется качество, а также время возникновения искры.

Конечно же, это отражается на работоспособности двигателя, что потребует дальнейшего вмешательства и регулировку.

Признаки позднего зажигания

Признак позднего зажигания

Смоделируем теперь ситуацию, когда вспышка топливной смеси произошла позже, чем необходимо – когда он уже находится в ВМТ или миновал её.

Читайте также:  Подогреватель блока двигателя мтз

В этом случае топливная смесь не будет сгорать не совсем вовремя. То есть в момент, когда поршень уже миновал нижнюю мёртвую точку в процессе такта рабочего хода, смесь будет продолжать гореть. И в результате остатки сгорающего топлива будут вытолкнуты поршнем в выпускной коллектор. Понятно, что энергия сгоревшего горючего не будет при этом реализована по назначению целиком – часть её пойдёт на обогрев атмосферы. И в результате симптомами позднего зажигания явятся:

Статья в тему: Масло в редуктор: проверка и замена, сколько и какое масло заливать

Это общее описание влияния угла опережения зажигания на работу двигателя. Речь идёт именно об опережении, потому что оптимальное время вспышки – не тот момент, когда поршень находится в ВМТ, а именно чуть раньше – т.е. зажигание «опережает» работу механической части мотора – кривошипно-шатунного и газораспределительного механизмов. На разных ДВС регулировка угла опережения осуществляется по-разному. Рассмотрим основные моменты более подробно.

Раннее или позднее зажигание, что лучше?

Необходимый момент опережения зажигания – безусловно, важный фактор, который отражается на полной работе автомобиля. Этот показатель регулирует работоспособность автомобиля в общем. Многие интересуются, какой вариант зажигания лучше: поздний либо ранний. Ответ удивляет, поскольку ни один из предложенных вариантов не является верным.

Для двигателя лучшим считается оптимальный режим зажигания.

При нём мотор не будет ощущать высокие нагрузки. Крайние поздние и ранние варианты наверняка принесут автовладельцу немало проблем с техническим состоянием транспортного средства. Однако всё имеет свои нюансы, в этом случае их нужно рассмотреть более подробно.

Признаки раннего зажигания

Признаки позднего зажигания

Как можно заметить, что в первом случае, что во втором — приятных моментов мало. Несмотря на это многие автовладельцы (особенно машин отечественного производства) выбирают позднее зажигания при прогреве двигателя и на старте. Некоторые производят раннее зажигание, но в этом случае на малых оборотах будет значительно проседать мощность.

Признаки раннего и позднего зажигания на КАМАЗе

Как выставить зажигание на дизеле (момент впрыска)

Угол опережения зажигания

Работа мотора на позднем впрыске

Установка впрыска чуть позднее.

как НЕ надо проверять начало момента впрыска топлива на дизеле

дизель регулировка впрыска — простой вариант

Теория ДВС: Момент Зажигания (пример настройки)

Поиск причины роста уровня масла и выставление впрыска топлива

Главная » Выбор » Признаки раннего и позднего зажигания на КАМАЗе
kamaz136.ru

Автомобиль с ГБО

Главная причина установки ГБО – экономия на топливе. Практика показывает, что затраты на газ меньше приблизительно в два раза, чем на бензин, для многих это весомый аргумент. Однако полностью на этот вид топлива не перейти, поскольку необходимость в бензине остаётся для прогрева и работы на высоких нагрузках.

Баллон ГБО в запаске

Плюс ко всему, газ гораздо быстрее расходуется и имеет достаточно высокое октановое число, поэтому топливно-воздушная смесь догорает ещё на этапе выпуска, что оказывает отрицательное термическое влияние на тракт выпуска.

Регулировка зажигания и горения смеси на машинах с ГБО – это основная задача, хорошая настройка позволяет сэкономить ещё больше средств на топливе.

Дизельный автомобиль

Многие симптомы некорректной работы на бензиновых автомобилях переносятся и на дизель. Главное отличие между двумя этими автомобилями заключается в методе воспламенения топлива. Поджиг солярки заключается за счёт тесного контакта топлива со сжатым, горячим воздухом.

Регулировка на дизельном двигателе

Настойка зажигания на дизельных машинах состоит в поиске необходимого угла опережения для впрыска дизельного топлива, оно должно обязательно подаваться определённо в пиковый момент сжатия.

Если неправильно выставить угол, то впрыск будет несвоевременным. Это приведёт к некачественному сгоранию смеси, а работа двигателя будет осуществляться с нарушениями.

Как выставить зажигание на дизельном двигателе

Одним из главных отличий дизельного мотора от бензинового является принцип поджига дизтоплива. Зажигание топливно-воздушной смеси в дизельном двигателе реализовано посредством самовоспламенения солярки от контакта с предварительно сжатым и нагретым в результате такого сжатия воздухом в цилиндрах.

Выставление зажигания на дизельном двигателе подразумевает изменение угла опережения впрыска топлива, которое подается в четко заданный момент в конце такта сжатия. Если угол выставлен отлично от оптимальных параметров, тогда топливный впрыск окажется несвоевременным. Результатом станет неполноценное сгорание смеси в цилиндрах, что вызывает разрушительный дисбаланс в работе двигателя.

Следует помнить, что даже незначительные отклонения при выставлении угла впрыска топлива могут привести к серьезной поломке дизельного двигателя.

Получается, под системой зажигания дизельного двигателя стоит понимать важнейший элемент системы питания силового агрегата – топливный насос высокого давления (ТНВД). В большинстве дизелей именно данное устройство в комплексе с дизельными форсунками отвечает за своевременную дозированную подачу солярки в цилиндры мотора.

Как выставить угол опережения впрыска на дизеле

Необходимость установки зажигания на дизеле своими руками зачастую возникает в таких случаях:

Одной из рекомендаций перед началом любых работ, связанных с разбором топливной аппаратуры дизеля, выступает острая необходимость четок отметить и освежить все метки. Для этого достаточно нанести небольшие штрихи при помощи краски или качественного маркера. Это облегчит последующую обратную сборку и установку шкива ТНВД, что автоматически исключит или сведет к минимуму потенциальные сбои зажигания.

Выставлять зажигание на дизеле можно несколькими способами:

Установка угла по меткам

Первый способ самостоятельного выставления угла зажигания дизеля (момента впрыска дизтоплива) по меткам подразумевает смещение топливного насоса. Такой способ подходит для дизельных ДВС, в которых установлена механическая топливная аппаратура.

Угол опережения впрыска регулируется благодаря повороту ТНВД вокруг оси. Также возможен способ, когда поворачивается зубчатый шкив распредвала по отношению к ступице. Этот способ подходит для тех конструкций, в которых насос и шкив не имеют жесткого крепления.

Завершающим этапом становится установка защиты маховика на место и затяжка крепежных болтов. Далее двигатель запускается, анализируется его работа. Агрегат на холостом ходу должен работать ровно и мягко, без провалов и дерганий. Жесткая работа дизеля, сопровождающаяся детонационными стуками, недопустима.

Далее нужно проверить правильность настройки в движении, избегая серьезных нагрузок. Прогрейте двигатель до рабочей температуры и оцените приемистость силовой установки, реакции на нажатие педали газа. Также необходимо следить за цветом выхлопных газов, так как поздний угол опережения топливного впрыска будет сопровождаться серо-черным дымлением мотора.

Подбор правильного угла впрыска

Настроить угол зажигания на дизеле опытным путем можно следующим образом:

Отсутствие положительных сдвигов в работе мотора потребует осуществления проворота топливного насоса вокруг оси. Путем таких проворачиваний необходимо вывести мотор на оптимальный режим работы. Лучшим вариантом станет работа дизеля в таком режиме, когда остается совсем немного до начала проявления детонации. Сами детонационные стуки хорошо заметны в звуке работы ДВС.

Второй доступный способ предполагает следующие шаги:

После запуска оценивается работа двигателя. В случае определения раннего или позднего угла топливного впрыска операцию по настройке следует повторить.

Источник

Дизельные системы впрыска

Дизельные системы впрыска

Cистемы впрыска дизтоплива Сommon Rail, решения с насос-форсунками, рядным и распределительным ТНВД. Особенности, принцип работы.

Системы впрыска дизельного топлива – далее по тексту также СВДТ – это системы питания ДВС. Функционируют на дизельном топливе – смеси газойлевых соляровых и керосиновых фракций, которые предварительно прошли специальную обработку. Но речь идёт именно о наличии соляровых фракций которые прошли щелостную очистку, а не о классической солярке с недостающим уровнем вязкости и выкипающей при температуре 240-400 °C

Также в дизельных двигателях в качестве альтернативной топливной смеси может использоваться «Bio-Diesel» – смесь моноалкильных эфиров жирных кислот. Как правило, Bio-Diesel делают из рапсового масла.

Принцип работы

Воспламенение – результат сжатия и нагрева дизельного топлива под высоким давлением в цилиндрах. То есть на деле мы имеем дело с самовоспламенением впрыскиваемого топлива при его контакте с горячим воздухом. Все процессы происходят внутри. Этот принцип диаметрально противоположен бензиновым системам, у которых топливо воспламеняется от искры зажигания – внешнего источника.

Чтобы понимать, как функционируют системы впрыска топлива дизельного двигателя, важно чётко разбираться, за что ответственен каждый её элемент.

СДВ.jpg
СВДТ включает в себя:

Движение плунжера.jpg

Типы дизельных систем питания

Решающее влияние на конструкцию системы впрыска дизельного двигателя оказывает способ подачи и распыливания.

Существует 4 основных типа СВДТ:

ТНВД.png

На рисунке — решения с рядным и распределительным ТНВД.

Если сравнивать рядные насосы и распределительные ТНВД, то важно понимать насосы распределительного типа полезны, когда нужны очень компактные и лёгкие решения. Рядные топливные насосы – при поиске оптимального варианта для ДВС тяжёлой техники.

Но будущее — за Сommon Rail и насос-форсунками. При этом особенно на практике хорошо себя зарекомендовали решения с индивидуальными — PLD-секциями. Плунжерная пара и управляющий элемент у них отделены от впрыскивающего элемента – форсунки, и соединены трубкой высокого давления.

PDL.png

Мастера СТО, принимая на диагностику автомобили с PDL-секций, могут гарантировать клиентам быстрое обнаружение неисправностей и ремонт СВДТ. Это обусловлено тем, что при диагностике и дальнейшем ремонте не нужно “вклиниваться” в головку блока цилиндров. Доступ к узлу – незатруднённый, поэтому сервис – максимально быстрый.

С рядным насосом

Конструкция с рядным насосным оборудованием появилась самой первой. Работает она по такому принципу:

Требования к качеству дизельного топлива значительно выше, нежели к бензину. Это можно связать с конструктивными особенностями СВДТ.

Качество процесса сгорания топливной смеси в цилиндре зависит от самого начала подачи дизельной смеси. Управление началом процесса осуществляется посредством регулятора начала подачи.

Регулировка.png

Непосредственно за регулировку объема топлива, подаваемого в цилиндр за один цикл, как понятно из текста выше, отвечает плунжерная пара. Расстояние между втулкой и плунжером очень маленькое (речь идёт о десятых микрона). Такие же цифры характеризуют и точность изготовления распылителей форсунок. Вот почему и требования к качеству дизтоплива очень высокие. Если в нём много примесей, топливная аппаратура быстро выходит из строя.

С насосным оборудованием распределительного типа

Существенно улучшить ситуацию, найти оптимизированное решение, которое позволяет достигать большего давления, позволяют системы впрыска дизельного топлива распределительного типа. Да, существует зависимость давления от оборотов ДВС. Но, главное, в этом случае все под полным контролем.

Устройства с рядным насосом бывают механическими и с электрорегулировкой.

Плунжерная пара у первых ТНВД была всего одна, у более поздних моделей — с ротором — плунжерных пар несколько. Такие решения — более производительные. При этом плунжерная пара (или несколько пар) связаны сразу с несколькими форсунками: двумя, четырьмя, шести.

Плунжер совершает сразу два типа движений — вращательное и поступательное. Таким образом, в зоне его ответственности — как подача, так и распределение топливной смеси.

Узел.jpg

В противовес устройствам с рядным насосом габариты — существенно меньше, топливная экономичность — больше, но надежными такие системы назвать нельзя. Если случается неисправность насоса, то вся СВДТ может выйти из строя.

Ещё один значительный недостаток — чувствительность к завоздушиванию. В свое время это стало серьёзным поводом для “переключения” производителей на СВДТ другого типа (с насос-форсунками и и Сommon Rail).

Насос-форсунки

Насос форсунка.jpg

В СВДТ с насос-форсунками форсунки и плунжеры составляют единую конструкцию. Запуск узла осуществляется от распредвала (за счёт механической рейки + регуляторов или чаще электромагнитных клапанов — последние обеспечивают лучшую производительность и точность дозирования топливной смеси).

Давление можно увеличивать максимально быстро и при этом — на существенные значения. Это возможно благодаря тому, что магистрали высокого давления у СВДТ с насос-форсунками — очень короткие, а усилие от кулачков через коромысло направлено непосредственно к насос-форсунке.

А вот весомый плюс всех решений с насос-форсунками, так это то, что производитель может позволить более высокую мощность ДВС, нежели в случае с рядным и распределительным насосом, дизтоплива водителю требуется меньше, уровень шума существенно уменьшается.

Система впрыска дизельного двигателя Сommon Rail

Рычаг управления.png

Благодаря организации электронного управления цикловой подачей в случае использования с электромагнитным клапаном можно существенно повлиять на показатель скорости, с которой топливоподающей система реагирует на изменение нагрузки и давления наддува.

Давление наддува.jpg

Сначала в процессе задействован клапан цикловой подачи, а далее в работу вступает тактовый клапан управления моментом подачи.

Common Rail обеспечивает возможность осуществить впрыск предварительной небольшой порции топлива, а только потом переходить к работе к основной порции дизтоплива, легко достичь ровной характеристики горения топливной смеси. Ведь в таких случаях давление получается удерживать практически стабильным.

Как и в случае с насос-форсунками работа ступенчата. Выделяется предварительный (на холостом ходу), основной (при увеличении нагрузки) и дополнительный впрыск (при нагрузке, достигающей плато).

Common Rail.jpg

Дизельные системы впрыска Common Rail создают идеальные условия для того, чтобы СВДТ соответствовали строгим экологическим нормам, ДВС были маломощными, производство компонентов было более дешевым, а диагностика — оперативной. Активным выпуском Common Rail заняты такие мировые гиганты, как BOSCH, DENSO, SIEMENS. СВДТ Common Rail активно устанавливается на Volvo, Volkswagen, Fiat, Toyota, Alfa Romeo, Mazda, Ford, Nissan,Honda, Hyundai, Kia и др.

Комплексно изучить дизельные двигатели автомобилей, включая плунжерное насосное оборудование,систему непосредственного впрыска Common Rail поможет интерактивная электронная программа “Дизельные двигатели автомобилей”

Видеообзор интерактивной программы

Источник

Система подачи топлива в дизельных двигателях: разновидности и отличия

Как известно, принцип работы дизельного двигателя несколько отличается от бензиновых аналогов. Главным отличием можно считать воспламенение топливно-воздушной смеси, которое происходит не от внешнего источника (искры зажигания), а от сильного сжатия и нагрева.

Другими словами, в дизельном двигателе происходит самовоспламенение топлива. При этом горючее должно подаваться под крайне высоким давлением, так как необходимо максимально эффективно распылить горючее в цилиндрах дизельного мотора. В этой статье мы поговорим о том, какие системы впрыска дизельных двигателей сегодня активно используются, а также рассмотрим их устройство и принцип работы.

Как работает топливная система дизельного двигателя

Система топливного впрыска дизельного двигателя

Как уже было сказано выше, в дизельном двигателе происходит самовоспламенение рабочей смеси топлива и воздуха. При этом сначала в цилиндр подается только воздух, затем этот воздух сильно сжимается и нагревается от сжатия. Чтобы произошло возгорание, дизтопливо (солярку) нужно подать ближе к концу такта сжатия.

Для наиболее эффективной подачи топлива и обеспечения оптимальных условий для самовоспламенения заряда с последующим полноценным сгоранием смеси топливный впрыск реализован через дизельную форсунку.

Получается, независимо от того, какой тип системы питания используется, в дизельных двигателях всегда присутствуют два основных элемента:

Другими словами, на многих дизелях давление создает ТНВД (топливный насос высокого давления), а подача дизтоплива в цилиндры происходит через форсунки. Что касается отличий, в разных системах топливоподачи насос может иметь ту или иную конструкцию, также по своему устройству отличаются и сами дизельные форсунки.

Еще системы питания могут отличаться по расположению тех или иных составных элементов, имеют разные схемы управления и т.д. Давайте рассмотрим системы впрыска дизельных двигателей более подробно.

Системы питания дизельных двигателей: обзор

Устройство систем топливного впрыска дизель

Если разделить системы питания дизельных моторов, которые получили наибольшее распространение, можно выделить следующие решения:

Указанные системы также имеют большое количество подвидов, при этом в каждом случае тот или иной тип является основным.

В результате предварительно сжатое топливо поступает на форсунку, после чего происходит впрыск. После того, как плунжер начнет двигаться обратно вниз, открывается канал для впуска топлива. Через канал горючее заполняет пространство над плунжером, далее цикл повторяется. Чтобы солярка попадала в плунжерные пары, дополнительно в системе имеется отдельный подкачивающий насос.

Сами плунжеры работают благодаря тому, что в устройстве насоса имеется кулачковый вал. Этот вал работает подобно распредвалу в ГРМ, где кулачки «толкают» клапана. Сам вал насоса приводится от двигателя, так как ТНВД соединен с мотором при помощи муфты опережения впрыска. Указанная муфта позволяет корректировать работу и подстраивать ТНВД в процессе эксплуатации двигателя.

Другими словами, если в рядном насосе пары необходимы на каждый цилиндр, то в распределительном достаточно 1 или 2 плунжерных пар. Дело в том, что одной пары в этом случае достаточно для подачи горючего в 2, 3 или даже 6 цилиндров.

Дальнейшее развитие этой схемы привело к появлению более современного роторного ТНВД. В таком насосе применен ротор, в котором установлены плунжеры. Указанные плунжеры движутся навстречу по отношению друг к другу, а ротор осуществляет вращение. Так происходит сжатие и распределение солярки по цилиндрам мотора.

Устройство и принцип работы ТНВДРекомендуем также прочитать статью о том, какой принцип работы имеет ТНВД дизельного двигателя. Из этой статьи вы узнаете об особенностях конструкции и работы топливного насоса высокого давления.

Главным плюсом распределительного насоса и его разновидностей является сниженный вес и компактность. При этом настраивать данное устройство сложнее. По этой причине дополнительно используются схемы электронного управления и регулировки.

Также использование насос-форсунок позволяет избавиться от отдельного привода ТНВД. Плунжеры в насос-форсунке приводятся в действие от распредвала ГРМ, который установлен в ГБЦ. Такие особенности позволили дизельным моторам с насос-форсунками получить широкое распространение не только на грузовиках, но и на крупных легковых автомобилях (например, дизельные внедорожники).

Система была разработана немецкой фирмой Bosch в 90-х годах. С учетом очевидных преимуществ за короткое время подавляющее большинство дизельных ДВС на легковых и грузовых авто стали оснащать исключительно Сommon Rail.

Общая схема устройства основана на так называемом аккумуляторе высокого давления. Если просто, горючее находится под постоянным давлением, после чего подается к форсункам. Что касается аккумулятора давления, данный аккумулятор фактически является топливной магистралью, куда горючее нагнетается при помощи отдельного ТНВД.

Благодаря тому, что давление в аккумуляторе постоянное, стало возможным реализовать быстрый и «многослойный» впрыск топлива через форсунки. Современные системы в двигателях Common Rail позволяют форсункам сделать до 9 дозированных впрысков.

В результате дизельный двигатель с такой системой питания экономичный, производительный, работает мягко, тихо и эластично. Также использование аккумулятора давления позволило сделать конструкцию ТНВД на дизельных моторах более простой.

Добавим, что высокоточный впрыск на двигателях Common Rail является полностью электронным, так как за работой системы следит отдельный блок управления. В системе используется группа датчиков, которые позволяют контроллеру точно определить, сколько дизтоплива нужно подать в цилиндры и в какой момент.

Подведем итоги

Как видно, каждая из рассмотренных систем питания дизельного двигателя имеет свои преимущества и недостатки. Если говорить о простейших решениях с рядным ТНВД, их главным плюсом можно считать возможность ремонта и доступность обслуживания.

Промывка системы питания дизельного двигателяРекомендуем также прочитать статью о том, как промыть систему питания (топливную систему) дизельного двигателя. Из этой статьи вы узнаете о доступных способах промывки систем топливного впрыска дизельного двигателя.

Что касается систем Common Rail, главным недостатком является не только высокая начальная стоимость таких решений, но и сложность и дороговизна последующего ремонта и обслуживания. По этой причине за качеством топлива и состоянием топливных фильтров нужно постоянно следить, а также своевременно проводить плановое обслуживание.

Система питания дизельного двигателя common rail

Виды дизельных форсунок в разных системах подачи топлива под высоким давлением. Принцип работы, способы управления форсунками, конструктивные особенности.

Дизельный ДВС Фольксваген TDI

Диагностика и ремонт дизельного двигателя

Распространенные неисправности дизельного двигателя и диагностика агрегатов данного типа. Проверка топливной системы дизельного мотора, полезные советы.

Промывка топливной системы дизель

Когда необходимо промывать систему питания дизельного двигателя: основные признаки. Как промыть топливную систему на дизеле, промывка своими руками.

ТНВД Бош

Назначение топливного насоса высокого давления в системе топливного впрыска дизельного двигателя. Виды ТНВД, конструктивные особенности насосов.

Топливный насос высокого давления (ТНВД)

Конструкция дизельного топливного насоса высокого давления, потенциальные неисправности, схема и принцип работы на примере устройства системы топливоподачи.

Источник

Угол опережения впрыска (УОВ) и нагрузка в дизельном двигателе

(Примечание: данная статья является общепознавательной и не привязана к какой либо марке автомобиля)

Странно слышать мнение специалиста, диагноста, ремонтника о том, что угол опережения впрыска в дизельном двигателе при его работе изменяется только в зависимости от частоты вращения его коленчатого вала.

Несомненно, частота вращения коленчатого вала является одним из основных параметров (характеристик), учитывающихся при организации горения топливовоздушной смеси в камере сгорания двигателя как дизельного, так и бензинового.

С увеличением частоты вращения коленчатого вала абсолютные длительности задержек воспламенения (в миллисекундах) сокращаются, но относительные длительности в градусах оборота коленчатого вала возрастают. Не надо забывать и о таком моменте, как задержка впрыскивания (время между началом подачи топлива насосом и впрыском топлива форсункой в камеру сгорания).

ЧЕМ ВЫШЕ ЧАСТОТА ВРАЩЕНИЯ КОЛЕНЧАТОГО ВАЛА, ТЕМ РАНЬШЕ НУЖНО ВПРЫСНУТЬ В КАМЕРУ СГОРАНИЯ ТОПЛИВО И НАОБОРОТ.

Можно ли при организации горения в цилиндрах дизельного двигателя ограничиться регулировкой УОВ по частоте вращения коленчатого вала? Или, может быть, есть ещё что-то, что требует нашего внимания?

Внимания требуют особенности смесеобразования и горения в камере сгорания дизельного двигателя.

Благодаря гетерогенному (неоднородному) составу топливовоздушной смеси (ТВС) в камере сгорания дизельного двигателя имеются области с богатой и бедной смесью, области, где только воздух или только дизельное топливо. И, конечно же, имеются так необходимые для своевременного воспламенения области топливовоздушной смеси (ТВС) со стехиометрическим составом. То есть целый набор составов смесей.

Эти условия справедливы как для двигателей с раздельными камерами сгорания, так и для дизельных двигателей с непосредственным (прямым) впрыском. Именно неоднородный состав топливовоздушной смеси (ТВС) позволяет дизельному двигателю работать на обеднённых смесях.

С другой стороны, тот же неоднородный состав смеси (ТВС) при меньших значениях является одним из

Кроме визуального подтверждения написанного, я хочу показать Вам с помощью диаграммы основные процессы, происходящие в камере сгорания дизельного двигателя.

Речь не будет идти о «взрывах». Будем говорить об управляемых и контролируемых событиях, происходящих во времени параллельно и последовательно. Нужно увидеть этот график и запомнить. Особенно важны температурные изменения у дизеля.

На рис.1 представлена типичная диаграмма изменения в цилиндре двигателя давления р и средней температуры t газов в функции угла ф, показан характер изменения во времени количества ст поданного в камеру сгорания топлива, скорость его подачи, коэффициента активного тепловыделения X и скорости тепловыделения

Для наглядности и простоты восприятия диаграмма нарисована в развёрнутом виде. Рассматривать её необходимо слева направо.

Поршень движется к верхней мёртвой точке, давление и температура рабочего тела растут, и если в точке 1 не будет впрыска топлива, то при движении поршня от ВМТ к НМТ давление и температура будут уменьшаться (обозначено пунктирной линией).

Читайте также:  Снижение нагрузки на двигатель

Подача топлива начинается в точке 1, в точке 2 появляются первые языки пламени.

Этот периодназывается задержкой воспламенения и он характеризуется тем, что поршень приближается к ВМТ, объём камеры сгорания уменьшается, температура и давление растут.

Количество топлива ст в этот период подаётся незначительное, но с большой скоростью

Температура в камере сгорания (в связи с впрыском) несколько снижается, а соответственно и давление сжимаемого воздуха вследствие затраты тепла на нагревание и испарение топлива.

Она характеризуется тем, что поршень «переваливает» ВМТ, то есть объём камеры сгорания сначала уменьшается, а затем начинает увеличиваться.

Давление при движении поршня от ВМТ достигает максимальных значений, температура продолжает расти. Этот период характеризует «жесткость» процесса сгорания в дизеле.

В этот период в камеру сгорания впрыскивается основное количество топлива ст с максимально возможной скоростью, Скорость тепловыделения резко возрастает и достигает максимальных значений, а затем начинает уменьшаться. Коэффициент активного тепловыделения X растёт.

Она характеризуется тем, что поршень движется от ВМТ к НМТ, объём камеры сгорания увеличивается. Давление р расширяющихся газов уменьшается, а их температура t достигает максимума.

В этой фазе заканчивается впрыск топлива.

В конце фазы замедленного горения наблюдается некоторое увеличение скорости тепловыделения ,, связанное с дополнительной турбулиза-цией заряда в начале нисходящего хода поршня. Коэффициент активного тепловыделения X растёт.

Жидкое топливо, впрыснутое в камеру сгорания, дробится на мелкие капли, распределяется по ней, нагревается и испаряется. В этом заключается суть физических процессов, и они протекают с поглощением тепла.

Процессы окисления имеют многостадийный характер и являются цепными. В результате химических реакций (протекают с выделением тепла) образуется ряд активных промежуточных химических продуктов (перекисей, альдегидов, спиртов и т.п.) способствующих дальнейшему ходу реакций.

Самовоспламенение есть конечным результатом развития этих реакций.

Истинная последовательность элементарных стадий в реакциях окисления и горения моторных топлив изучена ещё не полностью, однако характерным для большинства химических реакций является зависимость их скоростей от температуры и давления.

Сказанное выше совсем не означает, что физические и химические процессы осуществляются последовательно. Всё происходит почти одновременно. Химическая составляющая процесса горения несколько отстаёт в силу того, что сначала, всё-таки должно появиться в камере сгорания жидкое топливо. Более мелкие капли испаряются первыми. Как правило, эти мелкие капли группируются по краям факела впрыскиваемого форсункой топлива. Динамика развития топливного факела в механической системе такова, что он не может мгновенно занять объём камеры сгорания в цилиндре двигателя, сначала незначительное количество топлива под высоким давлением впрыскивается в цилиндр. Этому способствует закон подачи топлива (каждой фазе горения своё количество топлива), выраженный конструктивно в деталях механических систем впрыска. Впрыск дизельного топлива в этих системах осуществляется непрерывно.

В распределительных ТНВД с электромагнитными клапанами возможно осуществление предварительного впрыска топлива. Насос-форсунки легковых автомобилей обеспечивают предварительный впрыск с помощью гидромеханического привода.

Но сейчас не об этом.

Так вот, предварительное количество топлива с большой скоростью впрыскивается в нагретую плотную газовую среду, разрушается и испаряется. Обладая небольшой кинетической энергией, это малое (1-4 мм 3 ) количество топлива не способно пробиться сквозь плотный воздух и остаётся в районе форсунки и свечи накаливания. В процессе смесеобразования всегда образуются зоны, где X = 0,85. 0,9. Эти зоны служат центрами воспламенения окружающей более обеднённой смеси.

Ко времени основного впрыска топлива топливо, впрыснутое в камеру сгорания предварительно, уже готово к воспламенению и воспламеняется. В камере сгорания резко повышаются давление и температура, что способствует значительному сокращению задержки воспламенения основного впрыска. Дизельное топливо под высоким давлением при основном впрыскивании, обладая большей кинетической энергией, пробивается сквозь всё более уплотняющуюся (уже горящую) газовую среду ко всем удалённым от форсунки зонам камеры сгорания.

Давление в цилиндре нарастает своевременно, плавно и без шума.

СКОРОСТЬ ГОРЕНИЯ ЖИДКОГО ТОПЛИВА ОПРЕДЕЛЯЕТСЯ

СКОРОСТЯМИ ЕГО ИСПАРЕНИЯ И СМЕШЕНИЕМ ОБРАЗУЮЩИХСЯ ПАРОВ С ВОЗДУХОМ

Это справедливо для двигателей внутреннего сгорания, работающих на лёгком и тяжёлом видах жидкого топлива.

Впрыск топлива в камеру сгорания дизельного двигателя влечёт за собой

падение температуры (испарение топлива сопровождается поглощением тепла).

Величина падения температуры зависит от нагрузки.

Это особенно заметно при переходных режимах, связанных с увеличением нагрузки.

На стр. 58 Первого издания книги BOSCH «Системы управления дизельными двигателями» (перевод с немецкого издательства «За рулем», 2004год) показана характеристика момента начала впрыскивания в зависимости от частоты вращения коленчатого вала и нагрузки на двигатель легкового автомобиля при холодном пуске и рабочей температуре.

3) частичная нагрузка. Рис. 2

Несложно заметить, что при частоте вращения коленчатого вала 1000 об/ мин при частичных нагрузках (3) и полной нагрузке (2) требуется свой, соответствующий нагрузке, УОВ топлива. То есть большее количество топлива необходимо впрыснуть в камеру сгорания двигателя раньше для того, чтобы пик давления расширяющихся при сгорании газов «держать» за ВМТ.

Таким образом, ПРИ ВПРЫСКЕ ТОПЛИВА В ТАКТЕ СЖАТИЯ В КАМЕРЕ СГОРАНИЯ НАБЛЮДАЮТСЯ ИЗМЕНЕНИЯ ТЕМПЕРАТУРЫ.

Появляется необходимость в корректировке УОВ дизельного топлива.

При испытании топливных насосов высокого давления на стенде необходимо пользоваться таблицами или картами заданных контрольных параметров. В них указываются условия, при которых испытываемый ТНВД должен соответствовать табличным данным.

ФУНКЦИИ ТНВД ТИПА VE, ЯВЛЯЮЩИЕСЯ ПРЕДМЕТОМ ВНИМАНИЯ

— исправность элементов, отвечающих за высокое давление;

— исправность элементов, отвечающих за давление в ТНВД;

— исправность элементов автомата опережения;

— работа регулятора частоты вращения.

Эти показатели рассматриваются при заданных частотах вращения и полной нагрузке.

В 1978 году на ТНВД типа VE появилось отключаемое устройство регулирования начала подачи, зависящее от нагрузки.

Позже появились корректоры типа LFB (устройство изменения момента начала подачи топлива, в зависимости от нагрузки). Эти устройства предназначены для коррекции момента начала подачи топлива в зависимости от нагрузки для уменьшения шума и особенно эмиссии ОГ.

При проверке ТНВД проверяются корректоры по нагрузке и другие облагораживающие устройства.

ОСНОВНЫЕ ФУНКЦИИ КОРРЕКТОРА

— повышение давления в ТНВД при пуске;

— повышение давления в ТНВД при увеличении нагрузки;

— понижение давления в ТНВД при уменьшении нагрузки.

Давление в ТНВД изменяется в пределах 1 н-2 bar.

— обеспечить более ранний впрыск дизельного топлива при пуске (тем самым улучшив его);

— уменьшить давление в ТНВД на холостом ходу и, как следствие, уменьшить шумность работы дизельного двигателя на этом режиме;

Признаюсь честно, что до четвёртого Слёта диагностов не задумывался об особенностях устройства муфты регулирования опережения впрыском рядных ТНВД. Мне казалось естественным понимание того, что угол опережения впрыска топлива зависит от многих факторов. В том числе, от частоты вращения коленчатого вала двигателя и нагрузки. При более тщательном рассмотрении вопроса регулирования УОВ всплыл вопрос: как именно осуществляется это регулирование? Ведь в конструкции рядного ТНВД предусмотрен только регулятор частоты вращения. Устройство по регулированию угла опережения впрыском вынесено за пределы ТНВД.

Этими примерами я хочу сказать, что конструктивно в элементах простых механических топливных насосов высокого давления, отвечающих за регулирование УОВ в динамике, учтены колебания температуры в камере сгорания двигателя, зависящие от количества впрыснутого в неё топлива. В своё время подобные решения вполне устраивали производителей автомобилей и покупателей.

Считаю, что рассматривать все процессы, происходящие в камере сгорания двигателя, зависящие от частоты вращения, необходимо отдельно от процессов, происходящих при изменении нагрузки.

Для понимания сути происходящего. Разделить эти процессы нельзя.

Изменение количества рабочего тела влечет за собой изменение частоты вращения коленчатого вала. Даже в режиме нулевой нагрузки.

На стр. 58 Первого издания книги BOSCH «Системы управления дизельными двигателями», перевод с немецкого издательства «За рулем», 2004год, сказано: «. Оптимальные значения углов опережения впрыскивания меняются в зависимости от нагрузки на двигатель, что требует их регулирования. Необходимые величины устанавливаются отдельно для каждого типа двигателя и образуют поле характеристик, которое определяет момент начала впрыскивания в зависимости от нагрузки на двигатель, частоты вращения коленчатого вала и температуры охлаждающей жидкости. ».

Тридцать восемь лет назад говорилось о регулировке УОВ в зависимости от частоты вращения коленчатого вала двигателя и от нагрузки. Возможности по организации оптимального горения топливовоздушной смеси в цилиндрах двигателя в то время были совсем иные, чем сегодня.

Источник

Toyota Corolla ’85 CE80 1.8D(1С) › Бортжурнал › Полезная статейка о дизеле.

Нарвался на такую интересную статью, написанную одним сервисмэном.

ДЫМ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

Рис. 44. Поднять давление в корпусе ТНВД довольно просто – достаточно тонким пробойником чуть осадить заглушку в корпусе редукционного клапана. Если вы это сделаете больше, чем нужно (двигатель начнет работать очень жестко), придется выкручивать редукционный клапан и в тисках осаживать заглушку еще дальше. После этого стопор и плунжер с пружинкой выпадут, и можно будет выбивать заглушку в обратном направлении. Потом обратно вставить пружинку, плунжер и стопор и закрутить редукционный клапан на место. Теперь можно будет предпринять вторую попытку регулирования давления в корпусе ТНВД.

Снимается (выворачивается) клапан у всех ТНВД довольно легко, но есть исключение. Это большинство ТНВД установленных на двигатели фирмы «Mitsubishi». Там, чтобы вывернуть редукционный клапан, чаще всего надо длинным зубилом срубить кусочек кронштейна. Но необходимость этой операции зависит от того, насколько ТНВД повернут на более ранний впрыск топлива. После того, как редукционный клапан вывернут, надо выбить заглушку обратно. Кстати, довольно распространенная причина тряски двигателя – заклинивание плунжера редукционного клапана. Если плунжер не заклинен, то он при встряхивании корпуса редукционного клапана шевелится и издает стук. Если этого стука нет, то следует с помощью, например, спички проверить, шевелится ли плунжер. Если нет – придется разбирать редукционный клапан. Для этого весь редукционный клапан надо установить на головку походящего размера и пробить заглушку еще дальше, так, чтобы она, сжав пружину, выбила плунжер и стопорное кольцо. После этого останется только вытряхнуть пружину и ударами молотка по тонкому бородку вернуть заглушку обратно. Потом надо вновь собрать редукционный клапан и установить его на место. И снова легкими ударами молотка попытаться отрегулировать давление в ТНВД. Эту операцию, «гонять» с помощью молотка заглушку туда обратно, можно делать неограниченно долго, до тех пор, пока давление внутри ТНВД вас не устроит, вернее работа двигателя на всех оборотах не станет приличной. Кстати, многие современные механические ТНВД типа VE, имеют сбоку на своем корпусе так называемое прогревное устройство. Если это устройство вышло из строя, то диапазон регулировки опережения впрыска путем изменения внутреннего давления будет занижен. Мы обычно в таких случаях регулировочным винтом просто уменьшаем воздействие капсулы прогревного устройства и все. Диапазон регулировок опережения впрыском становится более приемлемым. Ну а то, что нет прогревных оборотов при этом… Во-первых, это не смертельно, а во-вторых, их, нормальных, и так не было. А хотите прогревные обороты – покупайте новое прогревное устройство. Стоит оно порой более 200 долларов.
Таким образом, изменяя давление в корпусе ТНВД, можно изменять опережение впрыска топлива. Но только в диапазоне от холостого хода до 3000 об/мин. Примерно. Чтобы увеличить опережение впрыска топлива при более высоких оборотах, надо повернуть корпус ТНВД. Но тогда увеличится опережение впрыска топлива во всем диапазоне оборотов двигателя. Также следует иметь в виду, что давление топлива в ТНВД зависит и от степени засоренности сеточки, впрессованной в корпус болта «обратки». Поэтому чистка (продувка сжатым воздухом) этой сеточки – один из первых этапов регулировки опережения впрыска топлива. Вынимать сеточку из болта при этом не надо. Да и сложно вынуть сеточку из болта для прочистки, ничего не сломав. (РИС.45)

Рис. 45. Болт крепления «обратки» имеет впрессованный сетчатый фильтр. На шляпке этого болта, как правило, есть надпись «OUT». Эта надпись, скорее всего, сделана для того, чтобы этот болт не перепутать с болтом крепления подачи топлива в корпус ТНВД, который имеет тот же диаметр и тот же шаг резьбы. Сетчатый фильтр в болте нужен для того, чтобы не забилось дросселирующее отверстие в корпусе этого болта.

Одним из первых этапов регулировки опережения впрыска топлива является проверка чистоты фильтра тонкой очистки топлива и отсутствие подсоса воздуха. Осуществляется эта проверка очень просто. Достаточно перевести ТНВД на «внешнее питание», т.е. поместить канистру (можно просто пластиковую бутылку) с соляром прямо под капотом. После этого напрямую, минуя топливный фильтр и подкачивающий насос, подать топливо прямо в ТНВД. Линию перелива (обратку) надо также подключить к канистре. Иначе все топливо через нее в течение пары минут будет перекачено в топливный бак. Если с «внешним питанием» мотор работает гораздо лучше, то можно считать, что ТНВД исправен, и надо искать ограничение в подаче топлива. В самом простом случае, причиной ограничения подачи топлива может быть забитый грязью топливный фильтр или топливоприемник в топливном баке. Более сложные случаи – это подсос воздуха (его можно обнаружить, вставив в топливную магистраль прозрачный шланг) через неплотности в местах соединения топливопровода, в ручном подкачивающем насосе и т.п. Раз уж зашла речь о подсосе воздуха, приведем, пожалуй, самый сложный (по времени затраченному на диагностику и устранение неисправности) случай подсоса воздуха. Обычный, не «ефишный», двигатель 4М40 утром заводился и через несколько секунд глох. Потом опять заводился, мог заглохнуть, а мог и не заглохнуть. И при этом его всего трясло, и было полно синего дыма. После прогрева все становилось вроде бы на свои места. Но все равно, отмечалось снижение мощности и иногда тряска двигателя и синий дым. Самое любопытное, что на следующий день приехал еще один «Pajero» с таким же двигателем и с точно таким же дефектом. Тоже по утрам заводился и глох. И после прогрева двигатель работал так же, на «троечку». Первое, что мы сделали – это заменили резиновый шланг «обратки» на прозрачный, и тут же убедились, что топливо по нему идет с пузырьками воздуха. И цвет этого топлива не прозрачно-золотистый, а серо-черный. Но решили, мало ли чего нынче льют в топливные баки для экономии. Проверили наличие пузырьков воздуха на всасывающей магистрали. Поскольку воздух был и там, на всасывании, проверили все шланги, затяжку топливного фильтра, герметичность подкачивающего насоса, короче, добились того, что на всасывании воздуха не стало. Но в «обратке» воздух все равно не исчез. Тогда, после некоторых раздумий, мы сняли ТНВД (перед этим выставили ВМТ, потом чуть вернули назад и поставили свою метку на шестерне ТНВД) и обнаружили, что сальник ТНВД никакой. Нам оставалось только заменить «дубовый» сальник на новый, предварительно убедившись, что подшипник (бронзовая втулка), не разбит, и собрать все на место. И сразу стала ясна причина появления серо-черного топлива: при холодном сальнике происходил, вместе с воздухом, подсос моторного масла в ТНВД и топливо окрашивалось. Уровень масла в картере двигателя, как ни странно, при этом был в норме. Видать, не очень большое разжижение моторного масла соляром компенсировалось его расходом. Но масло мы тоже заменили. После сборки всего этого металлолома на место, воздух в «обратке» исчез, двигатель поднял свою мощность, стал работать ровнее и перестал глохнуть по утрам. Ту же операцию мы проделали и со вторым «Паджеро». А поскольку в результате ранее прошедшей борьбы с дефектом у обоих двигателей были заменены форсунки, все фильтры, все продуто и прочищено, то в результате после замены сальников получились отличные двигатели.
У двигателей с турбонаддувом наличие синевы в выхлопных газах, как уже упоминалось, может быть вызвано неисправностью уплотнения в самой турбине. Тогда моторное масло, попадая на раскаленные поверхности выпускного тракта, превращается в сизый дым, и мы имеем возможность наблюдать из выхлопной трубы этот дым в невероятных количествах. При текущих колпачках выпускных клапанов моторное масло также будет поступать в выпускной коллектор. Но в этом случае оно будет поступать маленькими порциями, и выхлопные газы будут заметно окрашиваться только при резком увеличении оборотов двигателя после работы на холостом ходу в течение нескольких минут. Все масло, которое будет попадать во впускной коллектор, полностью сгорит и синего дыма не будет. Конечно, при условии, что все цилиндры работают.
Белый дым. Ну, во-первых, белым часто называют сизый или синий дым. Например, когда разрушится турбина и моторное масло начнет поступать прямо в выпускной тракт, из выхлопной трубы повалит сизый дым, который можно очень легко принять за белый. Но стоит понюхать этот дым, и сразу становится ясным его происхождение. Ведь у многих на кухне в свое время горело масло на сковородке. Запах тот же самый. Во-вторых, за белый дым часто принимают пар, который виден в холодное время года из выхлопной трубы всех машин. Это вода, образовавшаяся в результате сгорания топлива. Потом, когда весь двигатель и его выпускной тракт полностью прогреются, этот пар перестанет быть видимым, хотя по-прежнему будет присутствовать. Убедиться в этом легко, достаточно поднести ладонь к выхлопной трубе, и она станет влажной. Из-за этого пара зимой очень трудно настраивать двигатели по цвету выхлопных газов. Приходиться долго прогревать двигатель, а в особо холодные дни (-20° и ниже) и этого сделать не удается. Основная же серьезная причина появления белого дыма из выхлопной трубы, это поступление охлаждающей жидкости в цилиндры, обычно в один. И именно этот цилиндр может даже не работать на холостом ходу, из-за чего двигатель (опять же на холостом ходу) трясется (троит). Охлаждающая жидкость попасть в цилиндры может из-за плохих прокладок во впускном коллекторе (почти все коллекторы подогреваются охлаждающей жидкостью), прогоревшей прокладки головки блока и, что встречается чаще всего у дизельных двигателей, из-за треснувшей головки блока. При этом, при трещине в головке блока, расширительный бачок, как правило, полный, из двигателя куда-то (да ясно куда – в выхлопную трубу) уходит охлаждающая жидкость и цвет этой жидкости, вследствие регулярного перегрева ржавый.
При трещинах в головке блока головку надо заменить новой. Но это стоит, новая головка, более 1000 долларов. Поэтому, чаще всего, приобретаются так называемые «контрактные» головки блока цилиндров. Это головки бывшие в употреблении и специально привезенные из Японии на запчасти. Стоят такие головки от 400 до 800 долларов. Ремонт треснутых, даже чугунных, головок возможен, особенно если трещина расположена между седлами клапанов. Однако мы не можем рекомендовать этот ремонт, поскольку он состоит в том, что сверлится отверстие, попадающее на трещину и туда впрессовывается медный стержень. Прорыва газов нет, но один из водяных каналов на половину заблокирован. Следовательно, ресурс такой головки будет уже снижен. Впрочем, если ребята умудрились запороть целую головку, то что можно сказать про судьбу восстановленной? Стоят такие восстановленные головки в районе 350 долларов и на многих машинах они ходят по нескольку месяцев. Правда, после такого ремонта машина, как правило, сразу продается.



Источник

Volkswagen Passat Variant SyncroG60 стал 1,9 M-TDI › Бортжурнал › Приобретёный опыт по установке момента впрыска у дизеля.

Приветствую всех читателей моего БЖ.
Вот решил поделиться своим опытом по установке момента впрыска на дизельных двигателях AAZ и AEY (M-TDI).
И так, допустим что у вас имеется дизельный двигатель с механическим тнвд (семейства VAG), у которого отсутствует ремень ГРМа и сбиты установочные метки.
Приблизительно так :-).

Естественно вы начинаете переварить кучу информации полученную с тех.книг и форумов. И узнали что Вам понадобится для этого специальные приспособления, а именно: планка для фиксации распредвала, валик для фиксации шкива тнвд и микрометрический индикатор часового типа для выставления момента впрыска. И эти приспособления действительны нужны. Но есть одно «НО», у нас нет их в данный момент, а двигатель нужно завести.
И так, как нам установить ремень ГРМ и момент впрыска, если нет приспособ?
Для начала нам надо выставить газораспределительный механизм. Начнем с распредвала.
Распредвал пороворачиваем так чтобы кулочки первого цилиндра смотрели вверх, а прорезь с обратной стороны торца распредвала должна встать параллельно корпуса гбц.

Затем устанавливаем поршень первого цилиндра в ВМТ, для этого совмещаем метку (0) на маховике КВ с меткой в окошке КПП. Если КПП нет, то расстояние между отверстиями болтов (сверху) делим по полам, ставим метку на блоке, это будет ВМТ. Совмещаем (0) с этой меткой.

Дальше тнвд.
Для установки тнвд в момент впрыска первой форсунки, нам надо совместить самое маленькое отверстие шестерне тнвд с отверстием кронштейна тнвд.

Точно совместить их не получится из-за пружины ппары в корпусе тнвд. Так что шкив будет уходить против часовой стрелки на один зуб. Но это не сташно.
Продолжаем дальше.
Устанавливаем ремень ГРМ на шестерню КВ подводим к шестерн тнвд, ключем на 19 аккуратно по часовой стрелке поворачиваем шестерню тнвд на один зуб (смотрим чтобы отверстия совпали), одеваем ремень на шестерню тнвд. После чего аккуратно убираем ключ, шестерня тнвд под действием пружины смещается на один зуб против часовой стрелки, метка (0) КВ тоже уходит на один зуб.
Дальше ремень ГРМа подводим к шестерне распредвала, но перед тем как одеть ремень нам надо шестерню распредвала на один зуб повернуть против часовой стрелки, после чего одиваем ремень и натягиваем его натяжным роликом.

Возвращаем метку (0) на своё место и видим что все метки встали как надо :-).

Далее выставляем момент впрыска тнвд, для этого нужно совместить метки на тнвд и его шестерни.

Совмещение меток производим следующий образом, все метки ГРМа должны остаться на своих местах. Метки совмещаем путем перемещения корпуса тнвд, а шестерня остаётся на своем месте. После чего тнвд затягивается. И всё готово :-), можно заводить двигатель :-).
При неоднократной проверки часовым индикатором, момент впрыска в пределах 0.84-0,92.

В принципе всё :-).
Спасибо за внимание :-). Всем удачи :-).

Источник