Научного центра керамические двигатели

Аддитивное изготовление керамических газотурбинных двигателей с встроенным электрогенератором

Главной причиной такого положения является необходимость смены поколения трудоемких конструкций ГТД из жаропрочных металлических сплавов, требующих сложных систем охлаждения при высоких температурах, на новые неохлаждаемые высокотемпературные ГТД из легких керамических материалов (ККМ) с долговременной температурой эксплуатации 1300–2000 ° C, что для традиционных металлических жаропрочных сплавов уже становится недостижимым. Бурное развитие аддитивных технологий дает дополнительные возможности для такого перехода. Специалисты понимают, что теоретические термодинамические основы двигателей именно этот путь прогресса определяют для получения экономичных высокоэффективных надежных ГТД.

На такую смену поколений ГТД, которые изготавливаются из ККМ, работают не один десяток лет лучшие фирмы США, Японии, Франции и ряда других стран, включая Россию. Имеются определенные успехи по созданию для ГТД отдельных керамических узлов и деталей (рис. 1), но о создании неохлаждаемых, целиком керамических ГТД (КГТД) зарубежные фирмы пока не сообщают.

Рис. 1. Электрический газотурбинный двигатель для беспилотника, Англия, 2012 г., мощность 3 кВт, КПД—19%, 4 кг — (а); первый опытный керамический газотурбинный двигатель GE Aviation, США, изготовленный с использованием АТ (программа FATE) в 2015 г. (б)

Только в России последние 10 лет две российские фирмы из Санкт-Петербурга из года в год делают доклады на конференциях в России и за рубежом о своих работах по созданию легких неохлаждаемых КГТД (рис. 2), которые отличаются надежной и высокоэкономичной работоспособностью при температуре на входе в турбину 1623 К (1350 ° C).

Рис. 2. Высокотемпературный неохлаждаемый КГТД. Электрическая мощность 2 кВт, TIT = 1623 К/1350°C, КПД — 29%

В перспективе — создание КГТД с температурой эксплуатации 1773 К (1500 ° C) и выше при низких затратах на изготовление и эксплуатацию и обеспечении многократного снижения стоимости электрической и тепловой энергии. При достаточном финансовом обеспечении становится возможным освоение неохлаждаемых высокоэкономичных КГТД с температурным уровнем работы материалов:

этап 1: Ti — температура эксплуатации 1673–1723 К — 2019 г.;

этап 2: Zr — температура эксплуатации 1800–1850 К — 2021 г.

Именно в новом поколении достигнуто превосходство по значениям КПД, экологических параметров и массогабаритным характеристикам по сравнению с металлическими аналогами, разработаны новые конструкции безлопаточных спирально-канальных или туннельных турбомашин, высокотемпературных камер сгорания с «холодным факелом», матричных теплообменников, а также устройств и трактов КГТД с уменьшением количества изготавливаемых деталей и устройств КГТД примерно в 150 раз (рис. 3).

Рис. 3. Количество изготавливаемых деталей и устройств КГТД: a) лопаточных — 1176 (традиционная технология), б) туннельных — 8 (АТ)

Газотурбинные двигатели из ККМ генерируют электроэнергию (их поэтому называют гибридными) и успешно работают при скорости вращения от 220000 до 840000 оборотов в минуту, при этом по сравнению с металлическими имеют в 3–4 раза меньшие массогабаритные характеристики.

Использование многомодульных керамических ГТД: в 3–5 раз снижает стоимость изготовления, ремонта и получаемой энергии; обеспечивает: высокую автоматизацию производства, применение упрощенной системы управления, регулирования и запуска, равномерную нагрузку (время работы, число пусков) модулей КГТД; эксплуатацию, как правило, на расчетном самом надежном, экологичном и экономичном — оптимальном номинальном режиме, длительную бесперебойную работу.

Такие двигатели открывают перспективу превращения транспортных средств в надежные и легко управляемые электрические корабли, самолеты, большегрузные автомобили и специальную военную технику. Автономным электроэнергетическим комплексам не страшны не только аварии в электросетях, но и гибридные войны. Такие экономичные и долговечные автономные энергетические комплексы нужны не только для транспорта, но и в других самых разных областях хозяйственной деятельности: от медицины до геологоразведки, от МЧС до расчетных центров банков.

Создатели гибридных КГТД, понимая их широкое применение в разных отраслях, разработали автоматизированную безусадочную технологию SLM–LLS (selective laser melting-lazer layer sintering) изготовления всех устройств ГТД из металлокерамических порошков (рис. 4а). Важным фактом является то, что размеры керамических изделий не зависят от температуры среды в диапазоне от 0 до 1350 ° С (1623 К) — рис. 4b.

Рис. 4. Технология изготовления изделий из ККМ

Рис. 5. Зависимость вероятности разрушения керамических изделий от напряжения

Следует подчеркнуть, что технология производства по схеме «исходные материалы→кермет→керамика» компенсировала такие недостатки, как:

Реализация аддитивной технологии позволяет не на словах, а на деле создавать легко перенастраиваемые безлюдные производства, используя для получения высокого качества изделий эффективное исследовательское оборудование, преобразованное из стандартного, предназначенного для производства металлических изделий. После масштабной модернизации с 2007 г. нами в установке были обеспечены:

Особенно перспективно применение микроКГТД в производстве беспилотных летательных аппаратов (БЛА), где очень важно максимально снизить массу электродвигателя, увеличивая время и радиус его действия, количество топлива и перевозимого груза беспилотника. Одно из возможных решений этой проблемы — керамический микродвигатель мощностью 200 Вт, успешно прошедший испытания на режиме при начальной температуре рабочего тела на входе в турбину 1400°С (1673 К) в течение более 100 часов. Двигатель был спроектирован и изготовлен нами по заказу фирмы IEPEN, Франция, в 2003–2005 гг.

Однако промышленный переход на двигатели нового поколения затянулся почти на десятилетие. К сожалению, только зарубежные фирмы все эти годы заключают контракты с российскими разработчиками, пытаясь главным образом узнать технологию жаропрочных ККМ и принципы конструирования КГТД. За счет этих контрактов научные центры поддерживают пионерские разработки в области создания КГТД.

Читайте также:  С турбинами 2 х тактные двигателя

Вследствие такого отношения к прогрессу и прорывным технологиям в двигателестроении государство несет многомиллиардные затраты на разработку металлических ГТД, практически устаревших уже на момент их создания, и такой металлический двигатель для транспортной авиации будет создан, как намечается, только к 2020 году.

Санкт-Петербург всегда в нашей стране имел славу города интеллектуальных разработок и передового научно-промышленного потенциала. Поэтому мы стараемся через научную прессу России привлечь внимание разных служб правительства, администрации города и страны к организации производства легких, экологичных, высокоэкономичных керамических ГТД на основе разработок научных центров «Керамические двигатели» им. А. М. Бойко и «Стекло и керамика», не дожидаясь, когда это сделают за рубежом.

А.В. Сударев, ООО «Научный центр «Керамические двигатели» им. А. М. Бойко
В. Г. Конаков, ООО «Научно-технический центр «Стекло и керамика»

Статья опубликована в журнале «Аддитивные технологии» № 2-2018.

Источник

Организация ООО «ЦЕНТР БОЙКО»

Состоит в реестре субъектов малого и среднего предпринимательства: с 10.08.2017 как микропредприятие

ИНН: 7811188684

КПП: 781101001

ОКПО: 01185326

ОГРН: 1157847125590

Дополнительные виды деятельности по ОКВЭД:

Наименование ИНН Доля Сумма
СУДАРЕВ АНАТОЛИЙ ВЛАДИМИРОВИЧ 780701178377 76% 7.6 тыс. руб.
КНЯЗЕВА ЕЛЕНА ВЛАДИМИРОВНА 471600225081 12% 1.2 тыс. руб.
СУРЬЯНИНОВ АНДРЕЙ АНДРЕЕВИЧ 780405880995 12% 1.2 тыс. руб.

Регистрация в Пенсионном фонде Российской Федерации:

Регистрационный номер: 088010099826

Дата регистрации: 09.04.2015

Наименование органа ПФР: Государственное Учреждение Управление Пенсионного фонда РФ по Невскому району Санкт-Петербурга

ГРН внесения в ЕГРЮЛ записи: 6157848641440

Дата внесения в ЕГРЮЛ записи: 27.05.2015

Регистрация в Фонде социального страхования Российской Федерации:

Регистрационный номер: 783004429778301

Дата регистрации: 09.04.2015

Наименование органа ФСС: Филиал №30 Санкт-Петербургского регионального отделения Фонда социального страхования Российской Федерации

ГРН внесения в ЕГРЮЛ записи: 6157848067790

Дата внесения в ЕГРЮЛ записи: 11.04.2015

Источник

Научный центр КЕРАМИЧЕСКИЕ ДВИГАТЕЛИ

При строительстве сложных объектов огромное значение всегда имеет выбор партнеров, подрядчиков и поставщиков. Для тех, кто ищет компанию, которая занимается реализацией оборудования для энергосбережения, одним из вариантов может стать научный центр КЕРАМИЧЕСКИЕ ДВИГАТЕЛИ. Опыт работы, сплоченный коллектив и доступные цены позволяют компании выполнять заказы различной сложности.

Организация расположена по адресу Полюстровский проспект, 15 к2.

Более подробную информацию вы можете получить по телефону 78122253453 или найти на сайте www.oap.gao.su.

Другие строительные компании поблизости

Отзывы о научном центре КЕРАМИЧЕСКИЕ ДВИГАТЕЛИ

Специалисты научного центра КЕРАМИЧЕСКИЕ ДВИГАТЕЛИ

Часто задаваемые вопросы о научном центре КЕРАМИЧЕСКИЕ ДВИГАТЕЛИ

Адрес заведения: Россия, Санкт-Петербург, Полюстровский проспект, 15 к2.

Доступен ли номер телефона научного центра КЕРАМИЧЕСКИЕ ДВИГАТЕЛИ?

Телефон для принятия звонков: 78122253453.

Какой здесь график работы?

Источник

Журнал об аддитивном производстве

Аддитивное изготовление керамических газотурбинных двигателей с встроенным электрогенератором

Газотурбинные двигатели обеспечивают прогресс в авиации, судостроении, энергетической и оборонной отраслях, и этому утверждению вряд ли что можно противопоставить. Однако с конца 80‑х годов прошлого столетия развитие ГТД практически свелось к эволюционному конструированию отдельных узлов при слабом росте рабочих параметров ГТД и коэффициента полезного действия (КПД).
Главной причиной такого положения является необходимость смены поколения трудоемких конструкций ГТД из жаропрочных металлических сплавов, требующих сложных систем охлаждения при высоких температурах, на новые неохлаждаемые высокотемпературные ГТД из легких керамических материалов (ККМ) с долговременной температурой эксплуатации 1300–2000°C, что для традиционных металлических жаропрочных сплавов уже становится недостижимым. Бурное развитие аддитивных технологий дает дополнительные возможности для такого перехода. Специалисты понимают, что теоретические термодинамические основы двигателей именно этот путь прогресса определяют для получения экономичных высокоэффективных надежных ГТД.
На такую смену поколений ГТД, которые изготавливаются из ККМ, работают не один десяток лет лучшие фирмы США, Японии, Франции и ряда других стран, включая Россию. Имеются определенные успехи по созданию для ГТД отдельных керамических узлов и деталей (рис. 1), но о создании неохлаждаемых, целиком керамических ГТД (КГТД) зарубежные фирмы пока не сообщают.

Рис. 1. Электрический газотурбинный двигатель для беспилотника, Англия, 2012 г., мощность 3 кВт, КПД—19%, 4 кг [1] — (а); первый опытный керамический газотурбинный двигатель GE Aviation, США, изготовленный с использованием АТ (программа FATE) в 2015 г. (б)

Только в России последние 10 лет две российские фирмы из Санкт-Петербурга из года в год делают доклады на конференциях в России и за рубежом о своих работах по созданию легких неохлаждаемых КГТД (рис. 2), которые отличаются надежной и высоко-
экономичной работоспособностью при температуре на входе в турбину 1623 К (1350°C) [2].

Рис. 2. Высокотемпературный неохлаждаемый КГТД. Электрическая мощность 2 кВт, TIT = 1623 К/1350°C, КПД — 29%

В перспективе — создание КГТД с температурой эксплуатации 1773 К (1500°C) и выше при низких затратах на изготовление и эксплуатацию и обеспечении многократного снижения стоимости электрической и тепловой энергии. При достаточном финансовом обеспечении становится возможным освоение неохлаждаемых высокоэкономичных КГТД с температурным уровнем работы материалов:
этап 1: Ti — температура эксплуатации 1673–1723 К — 2019 г.;
этап 2: Zr — температура эксплуатации 1800–1850 К — 2021 г.
Именно в новом поколении достигнуто превосходство по значениям КПД, экологических параметров и массогабаритным характеристикам по сравнению с металлическими аналогами, разработаны новые конструкции безлопаточных спирально-канальных или туннельных турбомашин, высокотемпературных камер сгорания с «холодным факелом», матричных теплообменников, а также устройств и трактов КГТД с уменьшением количества изготавливаемых деталей и устройств КГТД примерно в 150 раз (рис. 3).

Читайте также:  Руководство ремонт двигателя td42

Рис. 3. Количество изготавливаемых деталей и устройств КГТД: a) лопаточных — 1176 (традиционная технология), b) туннельных — 8 (АТ)

Газотурбинные двигатели из ККМ генерируют электроэнергию (их поэтому называют гибридными) и успешно работают при скорости вращения от 220000 до 840000 оборотов в минуту, при этом по сравнению с металлическими имеют в 3–4 раза меньшие массогабаритные характеристики.
Использование многомодульныхкерамических ГТД: в 3–5 раз снижает стоимость изготовления, ремонта и получаемой энергии; обеспечивает: высокую автоматизацию производства, применение упрощенной системы управления, регулирования и запуска, равномерную нагрузку (время работы, число пусков) модулей КГТД; эксплуатацию, как правило, на расчетном самом надежном, экологичном и экономичном — оптимальном номинальном режиме, длительную бесперебойную работу.
Такие двигатели открывают перспективу превращения транспортных средств в надежные и легко управляемые электрические корабли, самолеты, большегрузные автомобили и специальную военную технику. Автономным электроэнергетическим комплексам не страшны не только аварии в электросетях, но и гибридные войны. Такие экономичные и долговечные автономные энергетические комплексы нужны не только для транспорта, но и в других самых разных областях хозяйственной деятельности: от медицины до геологоразведки, от МЧС до расчетных центров банков.
Создатели гибридных КГТД, понимая их широкое применение в разных отраслях, разработали автоматизированную безусадочную технологию SLM–LLS (selective laser melting-lazer layer sintering) изготовления всех устройств ГТД из металлокерамических порошков (рис. 4а). Важным фактом является то, что размеры керамических изделий не зависят от температуры среды в диапазоне от 0 до 1350°С (1623 К) — рис. 4b.

Рис. 4. Технология изготовления изделий из ККМ (а), зависимость вероятности разрушения керамических изделий от напряжения (b)

Следует подчеркнуть, что технология производства по схеме «исходные материалы→кермет→керамика» компенсировала такие недостатки, как:
— низкая трещинностойкость;
— обрабатываемость алмазным инструментом;
— влияние масштабного фактора на структуру материала;
— высокая стоимость.
Реализация аддитивной технологии позволяет не на словах, а на деле создавать легко перенастраиваемые безлюдные производства, используя для получения высокого качества изделий эффективное исследовательское оборудование, преобразованное из стандартного, предназначенного для производства металлических изделий. После масштабной модернизации с 2007 г. нами в установке были обеспечены:
— двукратное увеличение мощности лазера, герметизация и замена материалов рабочей зоны;
— изменение систем нанесения и удаления порошка и очистки оптического канала;
— оптимизация режимов SLM–LLS и последующей термообработки;
— послойная визуализация и контроль параметров рабочего процесса;
— автономная система создания инертной среды.
Особенно перспективно применение микроКГТД в производстве беспилотных летательных аппаратов (БЛА), где очень важно максимально снизить массу электродвигателя, увеличивая время и радиус его действия, количество топлива и перевозимого груза беспилотника. Одно из возможных решений этой проблемы — керамический микродвигатель мощностью 200 Вт, успешно прошедший испытания на режиме при начальной температуре рабочего тела на входе в турбину 1400°С (1673 К) в течение более 100 часов. Двигатель был спроектирован и изготовлен нами по заказу фирмы IEPEN, Франция, в 2003–2005 гг.
Однако промышленный переход на двигатели нового поколения затянулся почти на десятилетие. К сожалению, только зарубежные фирмы все эти годы заключают контракты с российскими разработчиками, пытаясь главным образом узнать технологию жаропрочных ККМ и принципы конструирования КГТД. За счет этих контрактов научные центры поддерживают пионерские разработки в области создания КГТД.
Вследствие такого отношения к прогрессу и прорывным технологиям в двигателестроении государство несет многомиллиардные затраты на разработку металлических ГТД, практически устаревших уже на момент их создания, и такой металлический двигатель для транспортной авиации будет создан, как намечается, только к 2020 году.
Санкт-Петербург всегда в нашей стране имел славу города интеллектуальных разработок и передового научно-промышленного потенциала. Поэтому мы стараемся через научную прессу России привлечь внимание разных служб правительства, администрации города и страны к организации производства легких, экологичных, высокоэкономичных керамических ГТД на основе разработок научных центров «Керамические двигатели» им. А. М. Бойко и «Стекло и керамика», не дожидаясь, когда это сделают за рубежом. ■

Источник

Научного центра керамические двигатели

В настоящее время в двигателестроении, в первую очередь при создании газотурбинных двигателей (ГТД), применяются изготовленные из металлических материалов детали, требующие уже при рабочих температурах свыше 1000—1100°С непрерывного охлаждения за счет циклового воздуха, что сдерживает рост экономичности перспективных ГТД. Проблема может быть решена за счет создания и внедрения более жаропрочных и технологичных неохлаждаемых металлокерамических материалов. При этом следует ориентироваться на современные АТ производства, которые позволяют создавать изделия не только с улучшенными свойствами, но существенно меньшей массы.
В мировой практике производства ГТД получили широкое внедрение АТ изготовления деталей из металлических порошков (нержавеющая и хромистая стали, никелевые и титановые сплавы и т. д.), при этом физико-химические и прочностные свойства материала построенных деталей,
как правило, практически не отличаются от свойств литейных сплавов. Основными мировыми производителями установок АТ являются европейские и американские компании, такие как EOS, Concept Laser, SLM Solutions и другие. Следует отметить, что при продаже установок, реализующих АТ, практически все изготовители гарантируют их надежность только при работе с оригинальными порошковыми материалами, поставляемыми этими компаниями или их партнерами. Кроме того, компании предоставляют интегрированную в установку инструкцию для настройки параметров машины под ограниченный ряд рабочих материалов, что ограничивает возможности при изготовлении различных деталей двигателей. По заданию перечисленных выше компаний работают десятки материаловедческих институтов, объединенных в партнерские конгломераты. Как пример можно привести американскую организацию National Additive Man ufacturing Innovation Institute, являющуюся головной в этом секторе науки и техники. Все вышесказанное относится к АТ изготовления из металлических материалов. Что касается сегмента технологии на базе керамических материалов, то в настоящее время разработаны АТ только для технологической керамики, свойства которой (в первую очередь пористость и прочность) существенно хуже аналогов, изготовленных по традиционным технологиям (прессование, инжекция и т. д.).
Объясняется это особенностями процесса синтеза: при изготовлении керамических деталей по АТ не происходит плавления базового порошка, как в случае металлического, а формообразование получается за счет плавления только его легкоплавкой (металлической) компоненты [1]. Порошок, свободный от вышеперечисленных недостатков, был создан в 2007 году. При изготовлении тестовых образцов методом СЛС использовалась фракция порошков менее 40 мкм при среднем значении

Читайте также:  Рисунок асинхронный двигатель с фазным ротором

14 мкм. Образцы представляли из себя диски диаметром 10 мм, высотой 3,5 мм и были исследованы на микроскопе Supra-40. Обзорная микротомография (рис. 1 а) показывает наличие агломерированных образований размерами от 1 до 20 мкм, состоящих из частиц от 20 до 120 нм, причем большая часть их с размером от 30 до 50 нм [2].
Процессы изготовления металлокерамического порошка на основе составов системы Al-SiC-BN, включающие целый ряд последовательных операций (подготовка исходных реактивов, смешивание, двойная механическая активация, уплотнение, вакуумная высокотемпературная обработка и др.), требуют непрерывного высокоточного контроля как качества компонентов, так и значений параметров выполняемых технологических процессов. Это осуществлялось с помощью набора прецизионного исследовательского оборудования, часть из которого показана на рисунке (рис. 2): а — адсорбционный анализатор, b — рентгеновский дифрактометр, с — установка Xradia microXCT (Jussi Timonen and Markko Myllys Department of Physics, University of Jyvaskyla, Finland).

а) b) c) d)

Рис. 1. а, b и с — сканирующая электронная микроскопия, d — лучевая томография (объемная визуализация образца 0,5х0,5х0,8=0,2 мм 3 ) структуры металлокерамического материала, полученного методом СЛС.

a) b) c)
Рис. 2. Исследовательское оборудование.

Конструкционная керамика получается при последующем длительном высокотемпературном синтезе. При этом отрицательным фактором для большинства конструкционных керамик является большая усадка построенных деталей-заготовок при окончательном синтезе (от единиц до десятков процентов изменения линейного размера), что приводит к невозможности достижения заданной точности изготовления, а при изготовлении сложных по форме тонкостенных конструкций — к их разрушению. Существует также проблема создания тонкого слоя мелкодисперсного металлокерамического порошка в рабочей зоне построения в виду существенно меньшей (в 5-7 раз) по сравнению с металлическими порошками его насыпной плотности: частицы керамического порошка вместо образования заданного слоя левитируют. Таким образом, основными направлениями исследований в мировой науке в области АТ для изготовления керамических деталей являются решения проблем:
• разработки исходных не содержащих специальных связующих компонентов металлокерамических безусадочных (с отрицательной усадкой 0,0÷0,3 %) порошков;
• уменьшения пористости изготовленных деталей.
В научных центрах «Керамические двигатели» им. А. М. Бойко и «Стекло и керамика» [1] с 2006 года ведутся работы в области разработки лазеросплавляемых керамических конструкционных материалов (ККМ), адаптированных для изготовления из них аддитивной технологией СЛС деталей сложной формы с обеспечением заданных свойств. За это время созданы:
• не имеющие аналогов ККМ (как для традиционной технологии прессования, так и адаптированных для АТ), обладающие термостойкостью до 1350°C, не имеющие усадки при сплавлении, допускающие механическую обработку на промежуточной стадии изготовления деталей без использования алмазного инструмента, а также применение таких технологических операций, как диффузионное соединение и электроэрозия;
• лабораторный технологический комплекс, включая исследовательскую лабораторию с высокоточными испытательными установками, позволяющий изготавливать для СЛС металлокерамические наноструктурированные порошки с контролем их свойств на каждом технологическом этапе;
• основы научного проектирования керамических деталей и устройств, высокотемпературного тракта керамического ГТД (турбина, камера сгорания, воздухоподогреватель, газоходы и др.), изготавливаемых по АТ.

a) b) c)
Рис. 3. Керамические устройства неохлаждаемых ГТД с температурой рабочего тела до 1350°С: a) рабочее колесо, b) сопловой аппарат турбины, c) жаровая труба камеры сгорания

В эру, предшествующую внедрению АТ в промышленное производство, детали из керамики, несмотря на существенное различие свойств металла и керамики, практически повторяли известные и давно используемые охлаждаемые металлические конструкции (рис. 3), которые достаточно сложны, состоят из множества отдельных деталей, требуют дорогостоящей оснастки для изготовления, доработки, исследований и ресурсных испытаний.
АТ позволили во многих случаях отказаться от сборных конструкций (узлов) и перейти моноблокам, которые по своей структуре сложнее и эффективнее классических конструкций, но при этом дешевле при изготовлении и более надежны в эксплуатации. На рис. 4 показаны основные
устройства ГТД, выполненные методом СЛС.

Рис. 4. Сопловой аппарат (а) и рабочее колесо (b) туннельной керамической турбины: (1, 2 — вход и выход рабочего тела; 3 — рабочий канал; 4,5 — опорный и упорный подшипники); внутренняя жаровая труба (c) керамической низкоэмиссионной камеры сгорания; наружная жаровая труба (d); фронтовое устройство (e); 3D модель участка (f) выхода горячего газа 1 и подвода холодного воздуха 2; фрагмент керамической матрицы (g) и общий вид (h) керамического воздухоподогревателя, прошедшие цикл горячих испытаний без охлаждения при температуре рабочего тела на входе в турбину 1350°С.

Источник