Наука и жизнь двигатели

Содержание
  1. Наука и жизнь двигатели
  2. Наука и жизнь двигатели
  3. Ракетный двигатель с лазерным зажиганием
  4. Как работают ракетные двигатели? в закладки
  5. Твердотопливные ракеты: топливная смесь
  6. Твердотопливные ракеты: конфигурации
  7. Жидкотопливные ракеты
  8. Будущее ракетных двигателей
  9. КЛАССИЧЕСКИЙ ЧЕТЫРЕХТАКТНЫЙ…
  10. Двигатель для гиперзвука
  11. Как работает самый совершенный ракетный двигатель в закладки 1
  12. Как работает двигатель ракеты
  13. Недостатки ракетных двигателей
  14. Двигатель с постоянными вращающимися взрывами
  15. Новый компактный бесколлекторный электродвигатель
  16. Гибридные ракетные двигатели совершенствуются
  17. B4dR0b0t › Блог › «Автосалон» — журнал «Наука и жизнь» 1980-83 об американских автомобилях.
  18. САМОЛЁТ С АТОМНЫМ ДВИГАТЕЛЕМ
  19. Оригинальные двигатели за всю историю автомобилестроения в закладки 5
  20. Как будет работать двигатель на термоядерном синтезе в закладки
  21. Что такое синтез?
  22. Полет на энергии синтеза
  23. Магнитоплазменная ракета с переменным удельным импульсом (VASIMR)
  24. Движение на термоядерном синтезе с динамическим газовым зеркалом
  25. Как работает ионный двигатель и где он применяется в закладки
  26. Как работает ионный двигатель
  27. Преимущества ионного двигателя для космического корабля
  28. Недостатки ионных двигателей
  29. Где используются ионные двигатели
  30. Когда изобрели ионный двигатель
  31. Куда катится автомобиль?
  32. Автомобили слишком тяжелы
  33. Двигатели и движители
  34. Как работает «вечный двигатель» и примеры его конструкции
  35. Можно ли запатентовать вечный двигатель
  36. Что такое вечный двигатель
  37. Как сделать вечный двигатель
  38. Вечный двигатель на магнитах
  39. Первый вечный двигатель
  40. Вечный двигатель Архимеда
  41. Вечный двигатель на противовесах
  42. Почему невозможно создать вечный двигатель
  43. Как будет работать электромагнитный двигатель космического аппарата в закладки
  44. Толчок в космос
  45. За пределы Солнечной системы
  46. ДОБРО ПОЖАЛОВАТЬ В «МИР ОТКРЫТИЙ»
  47. Как работает «вечный двигатель» и примеры его конструкции в закладки
  48. Можно ли запатентовать вечный двигатель
  49. Что такое вечный двигатель
  50. Как сделать вечный двигатель
  51. Вечный двигатель на магнитах
  52. Первый вечный двигатель
  53. Вечный двигатель Архимеда
  54. Вечный двигатель на противовесах
  55. Почему невозможно создать вечный двигатель
  56. «ЮЖНЫЙ СТАРТ»
  57. «Наука и жизнь» № 3, 2021
  58. анонс номера
  59. Жизнь двигателя после смерти ракеты
  60. Перезапуск производства для SLS
  61. Подтверждение многоразовости для XSP
  62. Заключение
  63. Эволюция двигателя внутреннего сгорания
  64. Как развивался ДВС: основные даты
  65. 1955 год: впрыск топлива
  66. 1962 год: турбонаддув
  67. 1964 год: роторный двигатель
  68. 1981 год: технология дезактивации цилиндров двигателя
  69. 2012 год: двигатель с высокой степенью сжатия – воспламенение бензина от сжатия

Наука и жизнь двигатели

В журнале «Наука и жизнь» № 3 за 2007 год была напечатана статья доктора технических наук В. Нисковских «Стирлинг по-российски». К сожалению, на рисунке перепутаны ветви высокого и низкого давления. В интернет-версии журнала ошибка исправлена. Схема должна выглядеть, как на рисунке вверху.

Но это не единственно возможное конструктивное исполнение. В. М. Нисковских прислал в редакцию ещё один вариант, который показан на рисунке внизу. В нём роторы имеют лопасти и расположены соосно с цилиндрами. Удалось обойтись без деталей, совершающих возвратно-поступательное движение. Ролики с пазами

Читайте в любое время

Все материалы сайта принадлежат редакции
журнала «Наука и жизнь»

Портал функционирует при финансовой поддержке Федерального агентства по печати и массовым коммуникациям.

Поддержка и развитие сайта – KTC Digital Production

Портал журнала «Наука и жизнь» использует файлы cookie. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie на вашем устройстве. Подробнее

Источник

Наука и жизнь двигатели

В России запатентован новый электродвигатель необычной шарообразной конструкции. Его первые натурные испытания прошли успешно, двигатель использовался как лодочный мотор. Изобретатели уверены, что в будущем новый высокопроизводительный электродвигатель найдёт широкое применение.

Популярность электромобилей, электроскутеров, промышленных квадрокоптеров и других полезных устройств с электрическим двигателем стремительно растёт. Вместе с ними на рынок приходят всё более совершенные и компактные конструкции электродвигателей, которые способствуют тому, что электротранспорт становится более доступным для населения.

В 2020 году изобретатель Рубен Даниэльевич Меджлумян запатентовал (RU 2 726 153 C1) в России высокопроизводительный бесколлекторный электродвигатель. Он более лёгкий и компактный по сравнению с коллекторными двигателями такой же мощности при том же крутящем моменте на валу. Необычная шарообразная форма обеспечивает эффективное взаимодействие магнитных полей статора и ротора. Автор изобретения – россиянин, а в США эти электродвигатели продаются под торговой маркой «HELV Motors».

HELV-Motors-New-render_750.jpg

Бесколлекторный двигатель с редуктором

В последнее время активно возрос интерес к бесколлекторным или, как их ещё называют, «бесщёточным» двигателям постоянного тока, обеспечивающим более надежную, эффективную и менее шумную работу. В коллекторных двигателях постоянного тока ток передаётся на вращающуюся часть мотора (ротор) с помощью скользящих по коллектору контактов – щёток. Щётки со временем изнашиваются и могут вызвать искрение. Поэтому коллекторный двигатель не следует использовать для работ, где требуется длительный срок эксплуатации и надежность. Конструкция коллектора также увеличивает размеры и массу мотора.

Заявленный компанией двигатель мощностью 60 кВт будет весить не больше 9.7 кг, а диаметр не превысит 22 сантиметров. Скорость вращения топовой модификации двигателя составляет 30 000 оборотов в минуту при напряжении в 400 вольт, а пиковая мощность электродвигателя в линейке продукции – 95 кВт.

В частности, мотор диаметром 119 мм и массой 2.5 кг при мощности электродвигателя 1.5 кВт создаёт крутящий момент на валу 32 кгс при частоте вращения 3 700 оборотов в минуту.

Такие характеристики дают возможность устанавливать его на электромотоциклы, квадрокоптеры и даже на электромобили. Натурные испытания были проведены в 2020 году на реке Волга, где электродвигатель использовался в качестве лодочного мотора.

HELV-Motors-в-корпусе-лодочного-мотора.jpg

Лодочный мотор в корпусе

Конструкция электродвигателя выглядит следующим образом. Неподвижная наружная часть двигателя (статор) выполнена в виде сферы, на которую слоями намотаны катушки электромагнитов. Их полюса равномерно смещены относительно друг друга. Для компактности обмотка может быть выполнена из плоского провода в виде ленты, покрытой изоляцией. Ротор выполнен в виде вала с жёстко закреплённым на нём постоянным магнитом, вектор магнитного поля которого ориентирован перпендикулярно валу. Ось симметрии статора совпадает с осью вращения вала. Такая конструкция помимо уменьшения размеров обеспечивает эффективное взаимодействие магнитных полей электромагнитов статора и постоянного магнита ротора, что увеличивает силу взаимодействия и надежность за счет более плавного вращения ротора, особенно при больших оборотах.

Как работает такой бесколлекторный электродвигатель? При подаче напряжения на одну из катушек статора она превращается в электромагнит, который, взаимодействуя с постоянным магнитом ротора, приводит его в движение. По мере поворота ротора питание контроллером переключается поочерёдно на следующую катушку, магнитные полюса которой смещены относительно предыдущей. Это приводит к непрерывному вращению ротора. В случае одной катушки в нужный момент времени производится переключение полярности полюсов электромагнита.

Использование нескольких обмоток обеспечивает бОльшую равномерность вращения. При этом увеличение количества катушек свыше 12 нецелесообразно, поскольку увеличивает массу и размеры мотора без существенного повышения крутящего момента. Конкретное количество катушек выбирается исходя из требований на габариты мотора.

Hands-working-on-HELV-Motor-coil.jpg

Процесс намотки катушки мотора.

Из-за явления электромагнитной индукции переменное магнитное поле порождает в металлических деталях токи Фуко (вихревые индукционные токи), приводящие к их нагреву и потере энергии. Чтобы уменьшить этот нежелательный эффект, статоры синхронных и асинхронных электрических моторов изготовлены из набора изолированных между собой пластин из тонкого железа.

Компания «Buddha Energy Inc.» пошла иным путём и разработала корпус статора электродвигателя «HELV Motors» из композитных материалов, что позволило не только убрать эффект токов Фуко, но и уменьшить вес двигателя. Кроме этого, композитный материал статора позволяет легко придавать ему нужную форму без использования дорогостоящего оборудования для обработки металла. Это тоже снижает стоимость электродвигателя.

Любопытно, что идея создания сферического электродвигателя родилась не на базе теоретических изысканий, а на основе экспериментальной проверки взаимодействий магнитных полей ротора и статора. Расчет точного взаимодействия магнитных полей внутри композитов – задача непростая. Но команда проекта нашла свой оригинальный, нестандартный подход. На 3D-принтере был напечатан лабораторный стенд, на котором и проводились испытания нескольких десятков вариантов обмоток статора. В результате был найден вариант, который удерживал ротор наилучшим образом. Всё остальное было делом техники.

HHELV-Motors-modeling.jpg

3D-модель первого лабораторного стенда

При механическом раскручивании вала извне, например, ветряком, водяной турбиной, двигателем автомобиля или любым другим устройством данный электродвигатель переходит в режим генератора и выдает электроэнергию, которая может быть накоплена или потреблена внешними устройствами.

Компания «Buddha Energy Inc.» пока не предоставила информацию о точной дате старта продаж двигателей «HELV Motors» в России, но есть надежда, что электродвигатели станут доступны на рынке в третьем квартале 2021 года.

Источник

Ракетный двигатель с лазерным зажиганием

Лазерная система зажигания ракетного двигателя, разработанная в Центре Келдыша, делает ракетные двигатели более надежными.

В «Конструкторском бюро химавтоматики» в Воронеже успешно испытали лазерную систему зажигания кислородно-водородного жидкостного ракетного двигателя, разработанную в ГНЦ ФГУП «Центр Келдыша». Впервые воспламенение топлива в ракетном двигателе производилось непосредственно в камере сгорания, без специального запального устройства. Лазерная система зажигания инициирует оптический пробой в воспламеняемой среде, температура плазмы в области пробоя достигает 500 тысяч градусов. Такая температура обеспечивает воспламенение любых топливных пар (кислород-водород, кислород-метан, кислород-керосин и т. д.) при разных соотношениях компонентов.

Уникальность системы заключается в ее небольших размерах (масса лазера составляет всего 450 г, масса блока питания – 900 г) и энергетических параметрах. Лазер стыкуется непосредственно к камере сгорания, мощность лазерных импульсов достигает 20 МВт при высокой частоте следования импульсов в течение всего процесса запуска двигателя. Такие параметры достигнуты за счет диодной накачки, не требующей специальной термостабилизации в широком диапазоне температур.

Лазерная система зажигания дает возможность снизить вес двигателя и упростить его запуск. Кроме того, как показали испытания, система остается надежной при многократном включении двигателя, причем как при криогенных температурах жидкого топлива, так и при тепловом воздействии во время запуска двигателя и в ходе его работы.

По словам генерального конструктора «Конструкторского бюро химавтоматики» (АО КБХА) Виктора Горохова, внедрение лазерной системы зажигания повышает надёжность работы жидкостного ракетного двигателя. Он подчеркнул, что ранее конструкторское бюро провело эксперименты по лазерному поджигу кислородно-керосинового топлива. Освоение новой технологии, использующей кислородно-водородное топливо, – большой шаг к созданию надежных жидкостных ракетных двигателей для многоразовых ракетно-космических систем.

Совместные испытания АО КБХА и Государственного научного центра «Исследовательский центр имени М.В. Келдыша» проведены в рамках опытно-конструкторской работы «Создание ракетных двигателей нового поколения и базовых элементов маршевых двигательных установок перспективных средств выведения».

По информации ГНЦ ФГУП «Центр Келдыша» и «Конструкторского бюро химавтоматики».

Источник

Как работают ракетные двигатели? в закладки

Освоение космоса — самое удивительное из мероприятий, когда-либо проводимых человечеством. И большую часть удивления составляет сложность. Освоение космоса осложняется массой проблем, которые нужно решить и преодолеть. Например, безвоздушное пространство, проблема с температурой, проблема повторного входа в атмосферу, орбитальная механика, микрометеориты и космический мусор, космическая и солнечная радиация, логистика в условиях невесомости и другое. Но самая сложная проблема — это просто оторвать космический корабль от земли. Здесь не обойтись без ракетного двигателя, поэтому в этой статье мы рассмотрим именно это изобретение человечества.

С одной стороны, ракетные двигатели настолько просто устроены, что за небольшую копейку вы сможете построить ракету самостоятельно. С другой стороны, ракетные двигатели (и их топливные системы) настолько сложны, что доставкой людей на орбиту, по сути, занимаются только три страны мира.

Когда люди задумываются о двигателе или моторе, они думают о вращении. К примеру, бензиновый двигатель автомобиля производит энергию вращения, чтобы двигать колеса. Электродвигатель производит энергию вращения для движения вентилятора или диска. Паровой двигатель делает то же самое, чтобы вращать паровую турбину.

Ракетные двигатели принципиально отличаются. Ракетные двигатели — это реактивные двигатели. Основной принцип движения ракетного двигателя — это знаменитый принцип Ньютона, «на каждое действие есть равное противодействие». Ракетный двигатель выбрасывает массу в одном направлении, а благодаря принципу Ньютона движется в противоположном направлении.

Понятие «выбрасывания массы и движения по принципу Ньютона» может быть сложно понять с первого раза, потому что ничего не разобрать. Ракетные двигатели, кажется, работают с огнем, шумом и давлением, а не «толкают вещи». Давайте рассмотрим несколько примеров, чтобы получить более полную картину реальности.

Если вы когда-либо наблюдали за работой пожарного шлага, вы наверняка заметили, что его достаточно сложно удержать (иногда пожарные вдвоем и втроем его держат). Шланг работает как ракетный двигатель. Он выбрасывает воду в одном направлении, а пожарные используют свою силу, чтобы противостоять реакции. Если они упустят рукав, он будет метаться повсюду. Если бы пожарные стоял на скейтбордах, пожарный рукав разогнал бы их до приличной скорости.

Когда вы надуваете воздушный шарик и выпускаете его, он летает по всей комнате, испуская воздух, — так работает ракетный двигатель. В данном случае вы выпускаете молекулы воздуха из шара. Многие считают, что молекулы воздуха ничего не весят, но это не так. Когда вы выпускаете их из шарика, шарик летит в противоположном направлении.

Еще один сценарий, который поможет объяснить действие и противодействие, — это космический бейсбол. Представьте, что вы вышли в скафандре в космос недалеко от своего космического судна, и у вас в руке бейсбольный мяч. Если вы его бросите, ваше тело среагирует в противоположном направлении от мяча. Допустим, он весит 450 гр, а ваше тело вместе со скафандром весит 45 кг. Вы бросаете бейсбольный мяч весом почти в полкило со скоростью 34 км/ч. Таким образом, вы ускоряете полукилограммовый мяч своей рукой так, что он набирает скорость 34 км/ч. Ваше тело реагирует в противоположном направлении, но весит в 100 раз больше мяча. Таким образом, оно принимает одну сотую ускорения мяча, или 0,34 км/ч.

Если вы хотите создать большую тягу от своего бейсбольного мяча, у вас есть два варианта: увеличить его массу или увеличить ускорение. Вы можете бросить мячик потяжелее или бросать мячи один за другим, либо бросить мяч быстрее. Но на этом все.

Ракетный двигатель, как правило, выбрасывает массу в форме газа под высоким давлением. Двигатель выбрасывает массу газа в одном направлении, чтобы получить реактивное движение в противоположном направлении. Масса идет от веса топлива, которое сгорает в двигателе ракеты. Процесс горения ускоряет массы топлива так, что они выходят из сопла ракеты на высокой скорости. Тот факт, что топливо превращается из твердого тела или жидкости в процессе сгорания, никак не меняет его массу. Если вы сожжете килограмм ракетного топлива, вы получите килограмм выхлопа в виде горячих газов на высокой скорости. Процесс сжигания ускоряет массу.

«Сила» ракетного двигателя называется тягой. Тяга измеряется в ньютонах в метрической системе и «фунтах тяги» в США (4,45 ньютона тяги эквивалентны одному фунту тяги). Фунт тяги — это количество тяги, необходимое для удержания 1-фунтового объекта (0,454 кг) неподвижным относительно силы тяжести Земли. Ускорение земной гравитации составляет 9,8 м/с².

Одной из забавных проблем ракет является то, что топливный вес, как правило, в 36 раз больше полезной нагрузки. Потому что помимо того, что двигателю нужно поднимать вес, этот же вес и способствует собственному подъему. Чтобы вывести крошечного человека в космос, нужна огромная ракета и много-много топлива.

Обычная скорость для химических ракет составляет от 8000 до 16 000 км/ч. Топливо горит около двух минут и вырабатывает 3,3 миллиона фунтов тяги на старте. Три основных двигателя космического шаттла, например, сжигают топливо в течение восьми минут и вырабатывают около 375 000 фунтов тяги каждый в процессе горения.

Далее мы рассмотрим топливные смеси твердотопливных ракет.

Твердотопливные ракеты: топливная смесь

Слева вы видите ракету до зажигания. Твердое топливо отображается зеленым цветом. Оно в форме цилиндра с трубой, просверленной по центру. При зажигании горючее сгорает вдоль стенки трубы. По мере горения оно выгорает к корпусу, пока не сгорит полностью. В небольшой модели ракетного двигателя или крошечной ракетке процесс горения может длиться в течение секунды или того меньше. В большой ракете же топливо горит не менее двух минут.

Твердотопливные ракеты: конфигурации

Читая описание для современных твердотопливных ракет, часто можно найти вот такое:

«Ракетное топливо состоит из перхлората аммония (окислитель, 69,6 % по весу), алюминия (топливо, 16 %), оксида железа (катализатор, 0,4 %), полимера (связующей смеси, удерживающей топливо вместе, 12,04 %) и эпоксидный отверждающий агент (1,96 %). Перфорация выполнена в форме 11-конечной звезды в переднем сегменте двигателя и в форме дважды усеченного конуса в каждом из остальных сегментов, включая конечный. Такая конфигурация обеспечивает высокую тягу при розжиге, а затем уменьшает тягу примерно на треть спустя 50 секунд после старта, предотвращая перенапряжение аппарата во время максимального динамического давления». — NASA

Здесь объясняется не только состав топлива, но и форма канала, пробуренного в центре топлива. «Перфорация в виде 11-конечной звезды» может выглядеть вот так:

Смысл в том, чтобы увеличить площадь поверхности канала, а значит, увеличить площадь выгорания, а значит — тягу. По мере того, как топливо сгорает, форма меняется к кругу. В случае с космическим шаттлом такая форма дает мощную начальную тягу и чуть послабее — в середине полета.

Твердотопливные двигатели обладают тремя важными преимуществами:

Но есть и два недостатка:

Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.

Жидкотопливные ракеты

В 1926 году Роберт Годдард испытал первый двигатель на основе жидкого топлива. Его двигатель использовал бензин и жидкий кислород. Также он пытался решить и решил ряд фундаментальных проблем в конструкции ракетного двигателя, включая механизмы накачки, стратегии охлаждения и рулевые механизмы. Именно эти проблемы делают ракеты с жидким топливом такими сложными.

Основная идея проста. В большинстве жидкотопливных ракетных двигателях топливо и окислитель (например, бензин и жидкий кислород) закачиваются в камеру сгорания. Там они сгорают, чтобы создать поток горячих газов с высокой скоростью и давлением. Эти газы проходят через сопло, которое еще больше их ускоряет (от 8000 до 16 000 км/ч, как правило), а после выходят. Ниже вы найдете простую схему.

Эта схема не показывает фактические сложности обычного двигателя. К примеру, норальное топливо — это холодный жидкий газ вроде жидкого водорода или жидкого кислорода. Одной из крупных проблем такого двигателя является охлаждение камеры сгорания и сопла, поэтому холодная жидкость сначала циркулирует вокруг перегретых частей, чтобы охладить их. Насосы должны генерировать чрезвычайно высокое давление, чтобы преодолеть давление, которое создает в камере сгорания сжигаемое топливо. Вся эта подкачка и охлаждение делает ракетный двигатель больше похожим на неудачную попытку сантехнической самореализации. Давайте посмотрим на все виды комбинаций топлива, используемого в жидкотопливных ракетных двигателях:

Будущее ракетных двигателей

Мы привыкли видеть химические ракетные двигатели, которые сжигают топливо для производства тяги. Но есть масса других способов для получения тяги. Любая система, которая способна толкать массу. Если вы хотите ускорить бейсбольный мячик до невероятной скорости, вам нужен жизнеспособный ракетный двигатель. Единственная проблема при таком подходе — это выхлоп, который будет тянуться через пространство. Именно эта небольшая проблема приводит к тому, что ракетные инженеры предпочитают газы горящим продуктам.

Многие ракетные двигатели крайне малы. К примеру, двигатели ориентации на спутниках вообще не создают большую тягу. Иногда на спутниках практически не используется топливо — газообразный азот под давлением выбрасывается из резервуара через сопло.

Новые конструкции должны найти способ ускорить ионы или атомные частицы до высокой скорости, чтобы сделать тягу более эффективной.

Источник

КЛАССИЧЕСКИЙ ЧЕТЫРЕХТАКТНЫЙ…

Цикл классического двигателя Стирлинга состоит из четырех тактов — двух изотермических и двух изохорических. Существует много вариантов конструктивного исполнения двигателя, и самый простой имеет два цилиндра — горячий и холодный, соединенные каналом, в котором находится теплообменник-регенератор, обычно в виде проволочной сетки или путанки. В цилиндрах перемещаются поршни, механически связанные системой кривошипов и рычагов так, что их движение сдвинуто по фазе не на 180 градусов, как в двухцилиндровых двигателях внутреннего сгорания, а на 90 градусов.

Во время первого такта (изотермического) поршень в холодном цилиндре проходит мертвую точку и почти не движется. Одновременно газ в горячем цилиндре нагревается, расширяется и давит на поршень, заставляя его совершать полезную работу.

Во время второго такта (изохорического) поршень горячего цилиндра движется вверх, вытесняя газ в холодный цилиндр, поршень в котором движется вниз. Объем газа в течение такта остается практически постоянным. Проходя по каналу, горячий газ охлаждается, передавая тепло в теплообменник.

Во время третьего такта (изотермического) уже поршень горячего цилиндра оказывается в мертвой точке. Поршень холодного цилиндра движется вверх, сжимая рабочий газ. От сжатия он нагревается и отдает тепло охлаждаемым снаружи стенкам цилиндра.

Во время четвертого такта (изохорического) поршень холодного цилиндра продолжает двигаться вверх и вытесняет газ в горячий цилиндр, поршень в котором движется вниз. По пути газ забирает тепло, накопленное в теплообменнике, и нагревается.

Интересно заметить, что в роторном двигателе Нисковских сжатие и расширение рабочего газа происходят непрерывно и процесс близок к изобарическому.

Источник

Двигатель для гиперзвука

Олег Соловьёв, инженер.

Но есть проблема: распространённые и хорошо освоенные в производстве турбореактивные двигатели разогнать самолёт до таких скоростей не могут. Сейчас считается, что для такой машины наилучшим образом подходит прямоточный реактивный двигатель.

Тем не менее, конструкторская мысль не стоит на месте. Недавно в редакцию пришло письмо с описанием интересной, хотя, на взгляд скептиков, довольно спорной схемы турбореактивного двигателя.

В своё время, когда разрабатывались первые турбореактивные двигатели (ТРД) для самолётов, и у нас, и за рубежом была принята практически одинаковая схема их конструкции из последовательно соединённых входного устройства, компрессора, камеры сгорания, турбины и реактивного сопла. Эта схема стала классической и до сих пор остаётся основой авиационного двигателестроения.

Тяга такого двигателя пропорциональна количеству воздуха, пропускаемого через проточную часть двигателя, и скорости его истечения из сопла. Чтобы повысить скорость истечения газа, нужно повысить его температуру. В настоящее время наиболее совершенные турбинные лопатки выдерживают температуру примерно 1200 о С (1500 К), и то непродолжительное время (см. «Наука и жизнь» № 6, 2007 г.). Тратятся колоссальные средства на создание новых жаростойких и жаропрочных материалов, результаты есть, но хочется большего. Пока существенно увеличить скорость не получается. С законами физики не поспоришь, но можно придумать, как их обойти.

Итак, если мы хотим выйти из тупика, необходимо каким-то образом значительно улучшить функциональные и тепловые показатели ТРД. Для этого придётся отказаться от некоторых традиционных постулатов и устранить фундаментальные конструкторские и технологические несоответствия.

Что я имею в виду? В классической схеме после компрессора воздушный поток разделяется на первичный для горения (30%) и вторичный для охлаждения (70%). Обидно, что в реактивную струю превращается столь незначительное количество воздуха, но это полбеды. Совсем худо, что вторичный поток дробится на десятки струй жаровой трубой камеры сгорания с огромными гидравлическими потерями. Другими словами, в существующих ныне камерах сгорания теряется львиная доля потенциальной и кинетической энергии, приобретаемой воздушным потоком при сжатии в компрессоре.

Кроме того, разделённые камерой сгорания зоны сжатия воздуха и расширения газовой струи находятся на значительном удалении друг от друга. Из-за этого существенно увеличивается масса двигателя и усложняется его конструкция (длинный и тяжёлый вал, соединяющий турбину с ротором компрессора, промежуточная подшипниковая опора, охлаждающие каналы, система подвода смазки и т.д.).

В существующих ТРД при увеличении тяги растёт частота вращения вала. А нужно ли это? В автомобиле, где движителем являются колёса, чем быстрее они вращаются, тем быстрее едет автомобиль. В ТРД, где движителем является сопло, нет необходимости увеличивать частоту вращения ротора, а целесообразно регулировать теплонапряжённость газового потока, то есть повышать или понижать температуру рабочего цикла, определяющую скорость истечения из сопла газовой струи и тем самым увеличивать или уменьшать силу тяги. В ТРД это делают, изменяя подачу топлива.

Переход с режима на режим достигается избыточной или недостаточной его подачей. В результате на всех режимах, кроме расчётного, происходят потери энергии. Следовательно, падает экономичность. Но даже на расчётном режиме топливо теряется из-за малоэффективного пассивного способа образования топливовоздушной смеси: топливо подают в камеру сгорания и распыляют его форсунками по воздушному потоку или против него, что приводит к столкновению мельчайших капель и образованию более крупных, которые в условиях факельного горения не успевают испариться и сгореть и выносятся газовым потоком в окружающую среду.

Приведённые фундаментальные несоответствия устранимы, если принять концепцию, включающую в себя три составляющие: новую конструктивную схему, новый способ работы и новый принцип регулирования ТРД, защищённые авторскими свидетельствами ещё во времена СССР. Возникает возможность упростить конструкцию, в несколько раз увеличить мощность, существенно повысить экономичность двигателя, уменьшить его габариты и массу, удешевить производство.

Главное конструктивное решение — отказ от камеры сгорания и замена вала полым ротором барабанного типа. Между его наружной поверхностью и внутренней поверхностью корпуса двигателя создаётся зона сжатия с компрессорными и зона расширения с турбинными лопатками. Ряды лопаток установлены на расстоянии межлопаточного осевого зазора друг от друга. Благодаря этому существенно уменьшаются габариты и масса двигателя: нет камеры сгорания, длинного и тяжёлого вала, массивных дисков турбины, исчезает промежуточная опора и множество вспомогательных узлов и деталей. Проточная часть двигателя теперь будет представлять собой зону сжатия, непосредственно переходящую в зону расширения. Это происходит в критическом сечении, где ротор имеет максимальный диаметр.

Как же теперь быть с многочисленными сложными процессами, протекающими в камере сгорания? В нашем случае все процессы, связанные с образованием топливовоздушной смеси, переносятся в зону сжатия, а процесс горения — в зону расширения непосредственно на турбинные лопатки. Однако необходимо, чтобы выполнялось условие, при котором скорость потока топливовоздушной смеси в критическом сечении превышала бы скорость распространения пламени по потоку, чтобы исключить помпаж, то есть забрасывание пламени обратно в зону сжатия. Современные средства электроники позволяют удерживать и надёжно контролировать процесс объёмного горения с заданными параметрами в автоматическом режиме.

Воздух из атмосферы через входное устройство поступает в компрессор, или в так называемую зону сжатия, где, например, на уровне третьей или четвёртой ступени в поток подают топливо. Зная расход воздуха в проточной части зоны сжатия, можно с большой точностью рассчитать и подать то количество топлива, при котором коэффициент избытка воздуха α* будет оптимальным.

Образовавшаяся в проточной части зоны сжатия (компрессора) топливовоздушная смесь, пройдя критическое сечение, воспламеняется в сопловом аппарате одновременно по всему объёму и горит с максимальной (стехиометрической) температурой 3000 о С при значительно более высоком давлении, чем в камере сгорания обычного ТРД. Другими словами, вместо факельного горения происходит более эффективное — объёмное.

Газовая струя за счёт теплового перепада совершает работу на турбинных лопатках, но уже на значительно более высоком энергетическом уровне, чем в известных двигателях. При этом львиная доля энергии высокотемпературного потока после турбинных лопаток приходится на работу расширения в реактивном сопле, и благодаря этому тяга двигателя многократно возрастает.

Рассмотрим процессы, протекающие в зонах сжатия и расширения. К атмосферному воздуху в зоне сжатия прикладывается механическая работа, совершаемая лопатками компрессора, которая выражается в повышении степени сжатия воздуха и его температуры. При подаче топлива (авиационного керосина) в воздушный поток, который не дробится на мелкие струи, как в камере сгорания, происходит механическое перемешивание частиц топлива с воздухом вращающимися компрессорными лопатками. Лопатки также разбивают крупные капли, и, следовательно, те быстрее испаряются, способствуя образованию топливовоздушной смеси с высокой степенью однородности, качественному, а главное, быстрому сгоранию и ускоренному истечению газового потока из реактивного сопла. Это не только позволяет достигнуть гиперзвуковых скоростей, но и заметно снизить количество несгоревшего топлива.

Испарение подаваемого в зону сжатия топлива приводит к поглощению теплоты, температура воздуха понижается, а плотность соответственно возрастает без дополнительных энергозатрат. Это значительно повышает не только экономичность, но и кпд тепловой машины.

В предлагаемой схеме процессы сжатия и расширения протекают в непосредственной близости друг от друга. Потенциальная и кинетическая энергия, приобретаемая потоком в зоне сжатия, не теряется и не рассеивается, как это происходит в камерах сгорания.

Здесь обнаруживается ещё один важный эффект. Часть тепловой энергии потока, работающей на вращение турбины, в виде механической работы идёт в основном на сжатие воздуха, и лишь незначительная её доля тратится на поддержание энергетики самолёта и преодоление трения в опорах. Если взять механическую работу, которая идёт на повышение температуры сжимаемого воздуха, то она также не пропадает и не рассеивается в окружающую среду, а переносится испарившимся топливом на турбинные лопатки, где входит составной частью в энергию, превращающуюся в механическую работу сжатия воздуха. Получается как бы замкнутый круг.

Возникает такая термодинамическая система, у которой часть тепловой энергии постоянно циркулирует внутри неё самой и не уносится в окружающую среду. А освободившееся эквивалентное количество энергии газового потока дополнительно идёт на работу расширения в реактивном сопле, значительно увеличивая тягу двигателя по сравнению с известными силовыми установками.

По-иному происходит в новом двигателе и переход с одного режима на другой. В воздушный поток зоны сжатия предлагается подавать топливо, не меняя положение впускного клапана.

При запуске двигателя топливо подаётся циклически небольшими порциями (прерывисто), а в режиме разгона продолжительность циклов подачи постепенно увеличивается, и система питания плавно переходит на непрерывный режим подачи топлива. Аналогично, но в обратной последовательности двигатель выводится из стационарного режима.

В таких условиях на всех режимах работы двигателя коэффициент избытка воздуха α в топливовоздушной смеси всегда будет оптимальным.

В режиме разгона двигателя влияние частоты вращения ротора на величину тяги сохраняется, так как компрессор ещё не создаёт расчётной степени сжатия воздуха. Поэтому вначале целесообразно применять минимальную продолжительность подачи топлива, но с большей частотой. По мере возрастания частоты вращения продолжительность подачи топлива увеличивают, а частоту впрысков снижают. Этот режим работы предназначен не для полёта, а только для разгона двигателя на земле.

Постепенно температура в критическом сечении и в зоне расширения растёт. Мощность, передаваемая ротору турбинными лопатками, становится настолько большой, что дальнейшее повышение давления и температуры воздуха может привести к самовоспламенению топливовоздушной смеси в зоне сжатия и вызвать помпаж.

Чтобы стабилизировать мощность турбины, предлагается техническое решение, способное удержать частоту вращения ротора на расчётном уровне, а теплонапряжённость газового потока продолжать наращивать, повышая температуру газовой струи до стехиометрической. Оно состоит в том, чтобы раскрыть сопловой аппарат после достижения максимально допустимого числа оборотов ротора на земле.

Это можно сделать, поворачивая лопатки соплового аппарата так, чтобы уменьшить угол входа газового потока на лопатки турбины, то есть направить его по касательной к ним.

Казалось бы, частота вращения ротора должна упасть, однако уменьшение угла входа потока на рабочие лопатки компенсируется ростом температуры потока и возрастанием его теплонапряжённости. В результате частота вращения ротора двигателя остаётся неизменной (на расчётном уровне), а мощность газовой струи, выбрасываемой из сопла, увеличивается.

Во время полёта с увеличением высоты плотность и давление атмосферного воздуха падают, что неизбежно сказывается на величине давления в зоне сжатия. В существующих ТРД это приводит к падению коэффициента избытка воздуха α, ухудшению экономичности и снижению мощности двигателя.

В новом двигателе с подъёмом достаточно частично закрыть сопловой аппарат, увеличивая угол входа газового потока на рабочие лопатки турбины, таким образом увеличивая частоту вращения ротора пропорционально падению давления воздуха в атмосфере. На больших высотах температура воздуха существенно ниже, чем около земли, поэтому увеличение частоты вращения ротора не приведёт к самовоспламенению топливовоздушной смеси в зоне сжатия и возникновению помпажа.

Во время снижения самолёта, когда давление атмосферного воздуха вновь возрастает, сопловой аппарат раскрывают, и в результате частота вращения ротора уменьшается до максимально допустимой у поверхности земли. Одним словом, с изменением высоты полёта частоту вращения автоматически меняют обратно пропорционально давлению в зоне сжатия при постоянной подаче топлива.

Очень важно: частоту вращения ротора меняют не для увеличения или уменьшения тяги, а только для сохранения расчётного соотношения топлива и воздуха в смеси!

Пришло время поговорить о системе охлаждения. В её основу положен самый распространённый и наиболее простой способ конвективного охлаждения. В классическом двигателе охлаждающий воздух по пути следования принимает участие в охлаждении многих узлов и деталей, аккумулируя теплоту, и лишь в последнюю очередь поступает во внутренние полости турбинных лопаток с уже высокой температурой и низкой охлаждающей способностью.

Конструктивное оформление системы охлаждения нового двигателя предусматривает отбор необходимого количества воздуха из зоны сжатия перед местом впрыска топлива. Охлаждающий воздух идёт двумя потоками — через каналы в корпусе и через внутреннюю полость ротора. Воздух непосредственно подают внутрь лопаток турбины и соплового аппарата, не заставляя его охлаждать другие узлы и детали. Это позволяет продуть сквозь внутренние полости лопаток необходимое количество воздуха с низкой температурой.

Расчёты показывают, что площадь внутренней охлаждаемой поверхности лопатки должна быть в 2,6 раза больше её рабочей наружной площади. При этом на охлаждение потребуется 25% от поступающего в двигатель атмосферного воздуха, а 75% пойдёт на создание топливовоздушной смеси (сравните с нынешними ТРД, где соотношение диаметрально противоположное, см. с. 49).

Воздушные потоки, выходя из внутренних полостей сопловых и рабочих турбинных лопаток в проточную часть двигателя, образуют внутреннюю и внешнюю теплоизолирующие воздушные прослойки (предохраняя корпус и ротор от разрушающего теплового воздействия) и через реактивное сопло вместе с газовым потоком выбрасываются в атмосферу.

Самолёт, оснащённый новым ТРД, будет способен на крейсерском режиме развивать гиперзвуковые скорости с числом Маха М = 3–4. Процесс его изготовления проще и дешевле, чем ныне существующих, поскольку в нём отсутствуют многие узлы, без которых не построишь обычный ТРД.

Комментарии к статье

* Коэффициент избытка воздуха — это отношение действительного количества воздуха в горючей смеси к теоретически необходимому для её полного сгорания.

Источник

Как работает самый совершенный ракетный двигатель в закладки 1

Космическая отрасль максимально консервативна. Это касается не только Роскосмоса, но и космических программ других стран. Только Илон Маск со своей SpaceX попробовал показать, что все может быть по-пижонски и у него получилось, но костюмы и дизайн кораблей в стиле фильма Интерстеллар это скорее исключение. В любом случае это больше внешняя оболочка. Внутри самой ракеты лежат те же принципы, что и в других подобных аппаратах. Самое главное, что в этом нет ничего принципиально нового и все уже было придумано советскими и американскими учеными десятки лет назад. Давно была придумана и технология типа двигателей, которые сейчас считаются новыми и перспективными.

Как работает двигатель ракеты

Работа любого современного ракетного двигателя основана на реактивной тяге, которая создается за счет сгорания большого количества топлива. Если не ограничиваться только космическими ракетами, а поговорить еще и об оружии, то двигатели делятся на несколько типов в зависимости от используемого топлива.

Если описать работу ракетного двигателя простым языком, то можно сказать, что когда топливо сгорает, оно создает постоянную тягу за счет реактивной струи. Это можно сравнить со сдувающимся шариком, который улетает, если его отпустить. Только в ракетах давление создается иным образом и мощность ”чуть-чуть” повыше.

Недостатки ракетных двигателей

Консервативность людей, которые работают в ракетной отрасли, объяснима. Они создают сложнейшее техническое средство, которое укрощает энергию крайне нестабильного топлива. В таком режиме работы малейшие изменения могут привести к катастрофе. Поэтому проще ничего не менять. Существуют даже присказки в духе ”дайте машине спокойно работать”.

Читайте также:  Руководство по ремонту двигателя ваз 2107 инжектор

Если такая мощь работает, может правда не стоит ей мешать?

Такой подход приводит к тому, что никаких революций за последние десятилетия не было. Немного менялось топливо, немного менялись двигатели, но принципиальных перемен не было. Тем не менее эффективность ракетного двигателя в десятки и сотни раз ниже, чем могла бы быть. Это не значит, что ракета может полететь быстрее или поднять в сто раз больше груза. Материалы просто не выдержат такую тягу.

Вместо этого можно просто в разы сократить запас топлива и взять дополнительный полезный груз. Так запуски станут намного дешевле и экономия на спускаемых модулях SpaceX покажется ”экономией на спичках”.

Главным недостатком современной технологии является то, что топливо сгорает постепенно. В обычных условиях скорость сгорания топлива составляет примерно 10-15 метров в секунду. Это называют медленным сгоранием, так как оно дозвуковое. Есть даже термин — дефлаграция. Так называется именно обычное воспламенение топлива, когда оно просто разгорается.

Когда горит так — это дефлаграция.

Двигатель с постоянными вращающимися взрывами

Технология такого двигателя была описана еще в 60-х годах прошлого века. Он должен приводить аппарат в движение за счет серии постоянных небольших взрывов смеси. Эти взрывы не могут создаваться одним источником. Для того, чтобы их было много, источники располагают по кругу, а частота последовательных взрывов очень высокая и они идут по кругу. В итоге, за счет этого достигается очень высокая равномерность тяги.

Так работает двигатель с вращающимися взрывами.

Для наглядности можно привести описание скорости распространения взрывов, которое я нашел в одном из источников. Если представить смену минивзрывов, как движение точки по кругу, то скорость движения этой точки будет в несколько раз выше скорости звука (примерно 330 м/c).

Даже за секунду происходит очень много таких взрывов, но все вместе они потребляют намного меньше топлива, чем процесс поддержания сгорания в обычном двигателе. Отсюда и экономия.

Любой двигатель перед применением должен пройти множество испытаний.

Если все так хорошо и технология настолько эффективна, то почему же ей не пользовались с 60-х годов, когда она была впервые предложена? Как обычно, есть несколько причин.

Одной из этих причин является недооцененность технологии. Не всегда сразу понятно, насколько стоит стремиться к реализации чего-то, и что это даст на выходе. Еще одной причиной являются сложности в подаче топлива.

Конструкция описываемого двигателя выглядит примерно так.

Для того, чтобы поддерживался именно режим детонации, нужно подавать топливо строго в определенный момент. Но учитывая, что такие взрывы происходят раз в долю секунды, сделать это крайне сложно.

Если не получится обеспечивать подачу топлива строго в нужные моменты времени, то есть по несколько тысяч раз в секунду, то процесс детонации превратится в дефлорацию и эффективность сгорания будет даже ниже, чем у классического двигателя.

Сейчас эта проблема отчасти решена и ученые уже начали испытывать подобные двигатели. Когда они доведут свои исследования до конца, мы получим двигатель, который станет настоящим прорывом, и тогда в летать в космос станет намного дешевле. Даже не из-за экономии на том, что сгорит меньше топлива, а из-за того, что при той же тяге можно увезти на орбиту тонны дополнительного груза. Благодаря этому, вывод каждого килограмма будет намного дешевле.

Источник

Новый компактный бесколлекторный электродвигатель

В России запатентован новый электродвигатель необычной шарообразной конструкции. Его первые натурные испытания прошли успешно, двигатель использовался как лодочный мотор. Изобретатели уверены, что в будущем новый высокопроизводительный электродвигатель найдёт широкое применение.

Популярность электромобилей, электроскутеров, промышленных квадрокоптеров и других полезных устройств с электрическим двигателем стремительно растёт. Вместе с ними на рынок приходят всё более совершенные и компактные конструкции электродвигателей, которые способствуют тому, что электротранспорт становится более доступным для населения.

В 2020 году изобретатель Рубен Даниэльевич Меджлумян запатентовал (RU 2 726 153 C1) в России высокопроизводительный бесколлекторный электродвигатель. Он более лёгкий и компактный по сравнению с коллекторными двигателями такой же мощности при том же крутящем моменте на валу. Необычная шарообразная форма обеспечивает эффективное взаимодействие магнитных полей статора и ротора. Автор изобретения – россиянин, а в США эти электродвигатели продаются под торговой маркой «HELV Motors».

HELV-Motors-New-render_750.jpg

Бесколлекторный двигатель с редуктором

В последнее время активно возрос интерес к бесколлекторным или, как их ещё называют, «бесщёточным» двигателям постоянного тока, обеспечивающим более надежную, эффективную и менее шумную работу. В коллекторных двигателях постоянного тока ток передаётся на вращающуюся часть мотора (ротор) с помощью скользящих по коллектору контактов – щёток. Щётки со временем изнашиваются и могут вызвать искрение. Поэтому коллекторный двигатель не следует использовать для работ, где требуется длительный срок эксплуатации и надежность. Конструкция коллектора также увеличивает размеры и массу мотора.

Заявленный компанией двигатель мощностью 60 кВт будет весить не больше 9.7 кг, а диаметр не превысит 22 сантиметров. Скорость вращения топовой модификации двигателя составляет 30 000 оборотов в минуту при напряжении в 400 вольт, а пиковая мощность электродвигателя в линейке продукции – 95 кВт.

В частности, мотор диаметром 119 мм и массой 2.5 кг при мощности электродвигателя 1.5 кВт создаёт крутящий момент на валу 32 кгс при частоте вращения 3 700 оборотов в минуту.

Такие характеристики дают возможность устанавливать его на электромотоциклы, квадрокоптеры и даже на электромобили. Натурные испытания были проведены в 2020 году на реке Волга, где электродвигатель использовался в качестве лодочного мотора.

HELV-Motors-в-корпусе-лодочного-мотора.jpg

Лодочный мотор в корпусе

Конструкция электродвигателя выглядит следующим образом. Неподвижная наружная часть двигателя (статор) выполнена в виде сферы, на которую слоями намотаны катушки электромагнитов. Их полюса равномерно смещены относительно друг друга. Для компактности обмотка может быть выполнена из плоского провода в виде ленты, покрытой изоляцией. Ротор выполнен в виде вала с жёстко закреплённым на нём постоянным магнитом, вектор магнитного поля которого ориентирован перпендикулярно валу. Ось симметрии статора совпадает с осью вращения вала. Такая конструкция помимо уменьшения размеров обеспечивает эффективное взаимодействие магнитных полей электромагнитов статора и постоянного магнита ротора, что увеличивает силу взаимодействия и надежность за счет более плавного вращения ротора, особенно при больших оборотах.

Как работает такой бесколлекторный электродвигатель? При подаче напряжения на одну из катушек статора она превращается в электромагнит, который, взаимодействуя с постоянным магнитом ротора, приводит его в движение. По мере поворота ротора питание контроллером переключается поочерёдно на следующую катушку, магнитные полюса которой смещены относительно предыдущей. Это приводит к непрерывному вращению ротора. В случае одной катушки в нужный момент времени производится переключение полярности полюсов электромагнита.

Использование нескольких обмоток обеспечивает бОльшую равномерность вращения. При этом увеличение количества катушек свыше 12 нецелесообразно, поскольку увеличивает массу и размеры мотора без существенного повышения крутящего момента. Конкретное количество катушек выбирается исходя из требований на габариты мотора.

Hands-working-on-HELV-Motor-coil.jpg

Процесс намотки катушки мотора.

Из-за явления электромагнитной индукции переменное магнитное поле порождает в металлических деталях токи Фуко (вихревые индукционные токи), приводящие к их нагреву и потере энергии. Чтобы уменьшить этот нежелательный эффект, статоры синхронных и асинхронных электрических моторов изготовлены из набора изолированных между собой пластин из тонкого железа.

Компания «Buddha Energy Inc.» пошла иным путём и разработала корпус статора электродвигателя «HELV Motors» из композитных материалов, что позволило не только убрать эффект токов Фуко, но и уменьшить вес двигателя. Кроме этого, композитный материал статора позволяет легко придавать ему нужную форму без использования дорогостоящего оборудования для обработки металла. Это тоже снижает стоимость электродвигателя.

Любопытно, что идея создания сферического электродвигателя родилась не на базе теоретических изысканий, а на основе экспериментальной проверки взаимодействий магнитных полей ротора и статора. Расчет точного взаимодействия магнитных полей внутри композитов – задача непростая. Но команда проекта нашла свой оригинальный, нестандартный подход. На 3D-принтере был напечатан лабораторный стенд, на котором и проводились испытания нескольких десятков вариантов обмоток статора. В результате был найден вариант, который удерживал ротор наилучшим образом. Всё остальное было делом техники.

HHELV-Motors-modeling.jpg

3D-модель первого лабораторного стенда

При механическом раскручивании вала извне, например, ветряком, водяной турбиной, двигателем автомобиля или любым другим устройством данный электродвигатель переходит в режим генератора и выдает электроэнергию, которая может быть накоплена или потреблена внешними устройствами.

Компания «Buddha Energy Inc.» пока не предоставила информацию о точной дате старта продаж двигателей «HELV Motors» в России, но есть надежда, что электродвигатели станут доступны на рынке в третьем квартале 2021 года.

Источник

Гибридные ракетные двигатели совершенствуются

Испытания любительского ГРД провели в Подмосковье. Возможно, это ещё один шаг, приближающий нас к российской частной космонавтике.

8 июля в Подмосковье состоялись испытания любительского гибридного ракетного двигателя (ГРД), созданного группой «Многоцелевые Реактивные Платформы»(http://rocket.web-box.ru/).

Пуски ракеты с ГРД проводились в СССР в 1930-е годы – 17 августа 1933 года стартовала знаменитая ГИРД-09, а 23 мая 1934 года – крылатая ракета 06.1. С тех пор в нашей стране ГРД не покидали стендов (например, в центре имени М.В. Келдыша). Следует отметить, что знаменитый американский частный суборбитальный космоплан SpaceShip One, выигравший Ansari X Prize, летал именно на гибридном ракетном двигателе.

К сожалению, двигатель отработал штатно всего 3-4 секунды, затем начался прогар, и тяга упала. Несмотря на то, что испытания можно признать лишь частично успешными, ещё один шаг к российской частной космонавтике сделан.

1. Твердотопливный ракетный двигатель и гибридный ракетный двигатель. Схема строения.
2. Погрузка стенда и баллонов с закисью азота.
3. Антон Фастенков из группы «Многоцелевые Реактивные Платформы» со своим «детищем».
4. Выгрузка.
5. Двигатель (поменьше) и бак окислителя (побольше).
6. Сборка стенда.
7. Мокрое полотенце для дополнительного охлаждения корпуса.
8. Заправка.
9. Установка бака с окислителем.
10. Работа двигателя – впечатляющее зрелище.
11. Место прогара.

Источник

B4dR0b0t › Блог › «Автосалон» — журнал «Наука и жизнь» 1980-83 об американских автомобилях.

В одной из своих публикаций я рассказал о том, как на меня повлиял раздел «Автосалон», который в 1970-80-х годах в научно-популярном журнале «Наука и жизнь» вёл известный энтузиаст автомобильного дела Лев Шугуров.
Процитирую сам себя: «Лев Михайлович Шугуров в «Науке и жизни» объяснял, как подразделяются автомобили на классы и каковы особенности автомобилестроения некоторых стран. Причем информации по западным автомобилям в «Науке и жизни» было в разы больше, чем в профильном автомобильном «За рулём», который больше специализировался на статьях типа «как своими руками при помощи консервной банки и куска водопроводной трубы сделать 146 видов запчастей для Запорожца». Пожалуй шугуровский «Автосалон» был важнейшим фактором, который разложил у меня в голове по полочкам мировой автопром. Разбуди меня в три часа ночи и я мог без запинки с точностью до кубического сантиметра назвать рабочий объем двигателя Morris Marina и до лошадиной силы – мощность Toyota Tercel, а также, что, например, Plymouth Volare относится к «промежуточному» американскому классу». Конец цитаты.

И вот мне тут удалось найти сканы (в основном хреновенькие) номеров журнала «Наука и жизнь» за 1980, 1982 и 1983 годы. К сожалению нет очень интересного 1981 года.
Пока решил выложить статью «Большие легковые» из номера 3 за 1980 год, и еще несколько небольших сканов из других статей, в которых засветились американские авто.
Это в принципе вся информация про американские авто, которая была доступна из советской прессы в начале 1980-х годов. если не считать такие журналы как «Америка», которые достать было крайне сложно (специализированный журнал «За рулем» про американские авто давал одну заметку раз в три года).

Вопрос к знатокам: сейчас американцы делят свои авто на Большие, Средние, Компактные, Субкомпактные и Микрокомпактные (недавно появившийся вместе с Шеви Спарками и прочими Смартами класс).
В англоязычной Википедии я читал, что средний класс иногда называют промежуточным.
А у Шугурова и большой, и средний, и стандартный, и промежуточный…
Кто что знает про то, как развивалась американская классификация?

Источник

САМОЛЁТ С АТОМНЫМ ДВИГАТЕЛЕМ

В 1950-х годах Советский Союз делал успешные шаги в развитии атомной энергетики. Уже работала первая отечественная атомная электростанция, разрабатывались проекты атомных ледоколов и подводных лодок. Руководитель советского атомного проекта Игорь Васильевич Курчатов решил, что пришло время поставить вопрос о создании атомного самолёта.

Преимущества ядерных двигателей были очевидны: практически неограниченная дальность и длительность полёта при минимальном расходе топлива — всего несколько граммов урана на десятки часов полёта. Такой самолёт открывал самые заманчивые перспективы перед военной авиацией. Однако первые проработки проекта показали, что полностью защитить самолёт от выхода радиоактивных излучений за пределы конструкции реактора не удаётся. Тогда было принято решение создать так называемую теневую защиту кабины пилотов, а всё бортовое оборудование вне кабины, подверженное гамма-нейтронному облучению, самым тщательным образом обследовать. Первым делом надо было выяснить, как поведут себя незащищённые приборы при работающем реакторе.

Влияние радиоактивного излучения на бортовое оборудование изучали сотрудники Лётно-исследовательского института (ЛИИ) и Института атомной энергии (ИАЭ). Так сложилось содружество инженеров и конструкторов, специалистов по авиационному оборудованию и физиков-ядерщиков. Для исследований в ИАЭ нам предоставили реактор ВВЭР-2, в котором вода охлаждает аппарат и одновременно служит замедлителем нейтронов до энергий, требуемых для поддержания управляемой цепной реакции.

Руководил группой В. Н. Сучков. От Лётно-исследовательского института в ней работали А. В. Курганов, Ю. П. Гаврилов, Р. М. Костригина, М. К. Бушуев,
Б. М. Сорокин, В. П. Конарев, В. К. Селезнёв, Л. В. Романенко, Н. И. Макаров, В. П. Федоренко, И. Т. Смирнов, Г. П. Брусникин, Н. Н. Солдатов, И. Г. Хведченя, А. С. Михайлов, В. М. Груздов, В. С. Лисицин и другие. От Института атомной энергии экспериментальными работами руководили Г. Н. Степанов, Н. А. Ухин, А. А. Шапкин.

Ещё в самом начале экспериментов специалисты столкнулись с рядом трудностей. Во-первых, исследуемые приборы и аппаратура довольно сильно нагревались за счёт поглощения энергии излучения. Во-вторых, полностью исключался визуальный контроль, да и какой-либо контакт с исследуемыми образцами. В-третьих, для чистоты экспериментов было очень важно проводить исследования в условиях, по возможности близких к условиям полёта, а на высоте негерметичная авиационная аппаратура работает в разрежённой атмосфере. Чтобы создать разрежение воздуха, сконструировали малогабаритные барокамеры, из которых специальный компрессор откачивал воздух. Исследуемые приборы устанавливали в барокамеры и помещали их в канал атомного реактора вблизи его активной зоны.

Впоследствии к экспериментам были подключены: первая атомная электростанция в Физико-энергетическом институте им. А. И. Лейпунского (ФЭИ), облучательные установки в филиале Физико-химического института им. Л. Я. Карпова (ФХИ) в Обнинске. В результате этих работ впервые в стране были определены реальная радиационная стойкость бортового авиационного оборудования и наиболее чувствительные изделия, элементы и материалы, выявлена «иерархия» радиационной стойкости по видам оборудования, решены другие важные вопросы.

Следующим этапом работы по программе создания атомного самолёта стали разработка и строительство наземного стенда летающей атомной лаборатории (ЛАЛ). Стенд нужен был для проведения дозиметрических исследований в реальной конфигурации самолёта Ту-95М, а также для оценки работоспособности изделий в реальных условиях. На стенде исследовали радиотехническую бортовую аппаратуру и электротехнические агрегаты, оценивали величину радиоактивности, вызванной воздействием нейтронов, а также её спад во времени. Эти данные были очень важны с точки зрения эксплуатации и послеполётного обслуживания самолёта.

Чтобы разобраться в ситуации, в первую очередь надо было определить химический состав пены. Взяли образцы и поехали в Семипалатинск, в ближайшую лабораторию. Но химики так и не разобрались, органика это или нет.

На объект срочно прилетел один из ведущих специалистов ИАЭ и посоветовал первым делом промыть бак реактора спиртом. Но эта процедура не помогла — аппарат продолжал гнать пену. Тогда решили ещё раз тщательно осмотреть всю конструкцию реактора изнутри. Чтобы не «схватить» повышенную дозу радиации, работать внутри бака можно было не более пяти минут. Осмотром занимались молодые механики из ОКБ им. А. Н. Туполева. Наконец, один из них с криком «Нашёл!» выбрался из бака, держа в руках кусок микропористой резины. Как туда попал этот посторонний предмет, можно только догадываться.

В мае 1962 года начался этап лётных испытаний, в котором участвовала наша бригада. Дозиметрические и другие исследования в условиях полёта показали, что во время работы реактора дальность радиосвязи сокращается под воздействием потока нейтронов, а находящийся в специальных ёмкостях вне защищённой кабины кислород, которым экипаж дышит во время высотного полёта, подвергается активации (в нём обнаружили молекулы озона — О3). При этом элементы электрооборудования работали достаточно устойчиво.

Масштабная и очень интересная работа по созданию атомного самолёта, к сожалению, не была завершена. Программу закрыли, но участие в ней осталось в памяти на всю жизнь. В дальнейшем мне приходилось заниматься разными лётно-космическими экспериментами, лётными испытаниями на первом сверхзвуковом пассажирском самолёте Ту-144 и запуском космического корабля многоразового использования «Буран». Я получал разные награды, но самая дорогая среди них — часы, которые вручил мне Генеральный конструктор академик Андрей Николаевич Туполев за участие в проекте создания атомного самолёта. Часы до сих пор великолепно работают и стали семейной реликвией.

Источник

Оригинальные двигатели за всю историю автомобилестроения в закладки 5

Сегодня я расскажу вам о десяти самых необычных двигателях за всю историю автомобилестроения, однако, есть некоторые правила. В этом списке имеют право находиться только двигатели серийных пассажирских автомобилей, никаких кастомных проектов. Итак, давайте же приступим!

Bugatti Veyron W16

Конечно, куда же без него, великий и могучий Veyron W16. Одни только цифры поражают: 8 литров, более 1000 лошадиных сил, 16 цилиндров – этот двигатель является самым мощным и сложным среди всех серийных автомобилей. Он имеет 64 клапана, четыре турбины, W-компоновку – такого мы еще никогда не видели. И да, на него распространяется гарантия.

Такие двигатели являются удивительно редкими, поэтому мы должны ценить то, что нам удалось застать такие уникальные технологические прорывы.

Knight Sleeve Valve

В начале прошлого века, Чарльз Йел Найт решил, что пора внести в конструкцию двигателей что-то новенькое, и придумал бесклапанный двигатель с гильзовым распределением. К всеобщему удивлению, технология оказалась рабочей. Такие двигатели были весьма эффективными, тихими и надежными. Среди минусов можно отметить потребление масла. Двигатель был запатентован в 1908 году, а позднее появлялся во многих автомобилях, в том числе Mercedes-Benz, Panhard и Peugeot. Технология отошла на задний план, когда двигатели стали быстрее крутиться, с чем традиционная клапанная система справлялась гораздо лучше.

Mazda Wankel Rotary

Пришел как-то один парень в офис Mazda, и предложил сделать двигатель, в котором трехконечный поршень должен вращаться в овальном пространстве. По сути, это напоминало футбольный мяч в стиральной машине, но по факту двигатель оказался удивительно сбалансированным.

Вращаясь, ротор создает три небольших полости, которые отвечают за четыре фазы силового цикла: впрыск, компрессия, мощность и выхлоп. Звучит эффективно, и так оно и есть. Соотношение мощности и объема довольно высоко, но сам по себе движок нефонтанистый, потому что камера сгорания у него сильно удлинена.

Странно, не так ли? А знаете, что еще более странно? Он всё еще в производстве. Купите Mazda RX-8 и получите сумасшедший движок, который вращается до 9000 об/мин. Чего же вы ждете? Скорее в салон!

Eisenhuth Compound

Джон Айзенхат знаменит тем, что изобрел интересный трехцилиндровый двигатель, в котором два крайних цилиндра питали средний, «мертвый» незажженный цилиндр своими выхлопными газами, который, в свою очередь, отвечал за выходящую энергию. Айзенхат пророчил своему двигателю 47-процентную экономию топлива. Через пару лет компания развалилась и обанкротилась. Делайте выводы.

Panhard Flat-Twin

Французская компания Panhard стала известна благодаря своим интересным двигателям с алюминиевыми блоками. Их изюминкой является конструкция. Суть в том, что блок и головка блока цилиндров сварены в единое целое. Объем двигателя составлял от 0.61 до 0.85 литра, мощность – от 42 до 60 л.с, в зависимости от модели. Удивительный факт: этот двигатель является самым странным участником и победителем (. ) гонок Le Mans.

Commer Rootes TS3

Странный двигатель со странным названием. Трехлитровый движок с оппозитными поршнями Commer TS3 оснащался компрессором и одним коленвалом (большинство оппозитных двигателей имеет два). Очень интересная махина во всех смыслах этого слова.

Lanchester Twin-Crank Twin

Компания Lanchester была основана в 1899 году, а уже через год они выпустили свой первый автомобиль Lanchester Ten, оснащенный четырехлитровым атмосферным двигателем с двумя коленвалами. Выжимал он 10.5 лошадиных сил при 1250 об/мин. Если вы еще не встречали элегантного произведения инженерного искусства, то вот оно.

Cizeta-Moroder Cizeta V16T

Как и Veyron, суперкар Cizeta выпускался ограниченной партией, и его ключевой деталью был двигатель. 560 лошадей, 6 литров, компоновка V-16. По сути, это два двигателя V8, использующих общий блок. Найти эту машину сейчас сложнее, чем честного чиновника. Количество произведенных автомобилей держится в тайне.

Gobron Brillie Opposed Piston

Двигатель Commer TS3 построили, вдохновившись именно этим чудом инженерии родом из Франции. Поршни располагались противоположно друг другу. Первая пара отвечала за коленвал, вторая – за шатуны, соединенные с коленвалом под углом 180°.

Компания производила широкий спектр двигателей, от двухцилиндровых объемом 2.3 литра, до шестицилиндровых объемом 11.4 литра. Был еще огромный 13.5-литровый четырехцилиндровый гоночный движок, благодаря которому впервые была пройдена отметка скорости в 100 миль/час в 1904 году.

Сама идея того, что сзади тебя в автомобиле вращается двигатель, довольно интересна, именно поэтому данный движок попал в наш список. Вообще, вращался не весь двигатель, а только цилиндры и поршни, потому что коленвалы были прочно зафиксированы. Установленные по кругу цилиндры охлаждались воздухом и напоминали крутящееся колесо.

Сам двигатель устанавливался позади водительского места, которое было выдвинуто максимально вперед. Идеальная схема для летального исхода во время аварии.

Бонус! Безумные двигатели не из серийных автомобилей

Chrysler A57 Multibank

30 цилиндров, пять карбюраторов, пять распределителей – вот что случается, когда Америка выходит на тропу войны. Этот монстр питал своими 425 силами такие знаменитые танки, как M3A4 Lee и M4A4 Sherman.

British Racing Motors H-16

Не упомянуть его было бы преступлением. Трехлитровый двигатель имел 32 клапана H-16, по сути два восьмицилиндровых двигателя, соединенных воедино инженером по имени Тони Радд. Он выжимал более 400 л.с, но был ненадежным и ужасно высоким. В 1966 году этот двигатель стал победителем гонок Формула 1 Гран При США, за рулем болида находился Джим Кларк.

Источник

Как будет работать двигатель на термоядерном синтезе в закладки

Люди уже успели побывать на Луне, да и полет на околоземную орбиту уже не кажется чем-то из ряда вон выходящим. В космосе давно и прочно обосновалась Международная космическая станция. Тем не менее, если вы задумаетесь о размерах нашей Солнечной системы, не говоря уж о всей Вселенной, станет очевидно, что наши шаги в освоении межпланетного и межзвездного пространства — просто пешком под стол. Для того, чтобы слетать на Марс и другие планеты, которые находятся вне досягаемости обычных ракетных двигателей, NASA разрабатывает несколько дополнительных реактивных двигателей, в том числе и на энергии солнца.

В принципе, космический корабль с силовой установкой на термоядерном синтезе должен воссоздать те же типы высокотемпературных реакций, которые происходят в сердце солнца. Огромная энергия этих реакций вырабатывается двигателем и создает тягу. Используя этот тип двигательной установки, космический корабль может добраться до Марса всего за три месяца. Обычным ракетам понадобится по меньшей мере семь.

Что такое синтез?

Мы и наша планета во многом зависим от миллионов ядерных реакций синтеза, которые каждую секунду происходят внутри ядра Солнца. Без этих реакций у нас бы не было ни света, ни тепла, и, вероятнее всего, жизни. Термоядерный синтез происходит, когда два атома водорода сталкиваются и создают больший атом гелия-4, который испускает энергию в процессе этого.

Вот как происходит эта реакция:

Синтез может происходить только в условиях крайне горячей среды, температура которой измеряется миллионами градусов. Звезды, состоящие из плазмы, представляют собой единственные природные объекты, достаточно горячие для создания реакции термоядерного синтеза. Плазма, которую часто называют четвертым состоянием вещества, представляет собой ионизированный газ, состоящий из атомов, лишенных некоторой части электронов. Реакция синтеза отвечает за создание 85 % энергии Солнца.

Высокий уровень тепла, необходимый для создания этого типа плазмы, приводит к тому, что ее нельзя заключить в контейнер из любого, известного нам вещества. Тем не менее, плазма хорошо проводит электричество, что позволяет удерживать, управлять и ускорять ее с помощью магнитного поля. Именно это легло в основу космического корабля с двигателем на основе синтеза, который NASA хочет построить в течение ближайших 25 лет. Давайте рассмотрим конкретные проекты двигателей на основе термоядерного синтеза.

Полет на энергии синтеза

Реакция термоядерного синтеза высвобождает огромное количество энергии, именно поэтому исследователи всячески пытаются приспособить ее к двигательной системе. Корабль на энергии синтеза мог бы серьезно вывести вперед NASA в гонке за Марс. Этот тип корабля может сократить время пребывания в пути на Марс более чем на 50 %, тем самым уменьшив вредные воздействия радиации и невесомости.

Строительство космического аппарата, летящего на энергии термоядерного синтеза, будет эквивалентно разработке автомобиля на Земле, который может ехать в два раза быстрее любого другого. В ракетостроении эффективность использования топлива ракетным двигателем измеряется его удельным импульсом. Удельный импульс означает единицу тяги на единицу пропеллента, потребляемого в течение времени.

Двигатель на синтезе может обладать удельным импульсом в 300 раз большим, чем обычные химические двигатели. Обычный химический ракетный двигатель обладает импульсом примерно 1300 секунд, что означает следующее: двигатель выдает 1 килограмм тяги на 1 килограмм топлива за 1300 секунд. Ракета на синтезе может обладать импульсом в 500 000 секунд. Кроме того, ракета на синтезе будет использовать водород как топливо, а значит, сможет пополняться при прохождении через космическое пространство. Водород присутствует в атмосфере многих планет, так что все, что будет нужно космическому аппарату для заправки, это погружение в атмосферу и набор топлива.

Ракеты на синтезе могут обеспечить более длительную тягу, в отличие от химических ракет, топливо которых быстро выгорает. Считается, что движение на синтезе позволит быстро добраться в любую точку Солнечной системы и за два года осуществить поездку на Юпитер и обратно. Давайте рассмотри два текущих проекта NASA по созданию движения на синтезе.

Магнитоплазменная ракета с переменным удельным импульсом (VASIMR)

VASIMR представляет собой плазменную ракету, которая является предшественником ракет на термоядерном синтезе. Но поскольку ракеты на синтезе будут использовать плазму, исследователи многое узнают об этом типе ракеты. Двигатель VASIMR прекрасен тем, что создает плазму в экстремально горячих условиях, а после выталкивает, создавая тягу. Есть три основных типа ячеек в двигателе VASIMR.

Во время миссии на Марс двигатель VASIMR постоянно бы разгонялся в течение первой половины путешествия, а после изменил бы направление и замедлялся бы вторую половину. Ракету на переменной плазме можно также использовать для позиционирования спутников на орбите Земли.

Движение на термоядерном синтезе с динамическим газовым зеркалом

Одновременно с VASIMR разрабатывается и система движения на синтезе с динамическим газовым зеркалом (GDM). В этом двигателе длинные тонкие мотки проволоки с током действуют как магнит, окружая вакуумную камеру, содержащую плазму. Плазма находится в ловушке магнитного поля, создаваемого центральной секцией системы. В каждом конце двигателя находятся зеркальные магниты, которые препятствуют слишком быстрому выбросу плазмы из двигателя. Разумеется, часть плазмы должна просачиваться и обеспечивать тягу.

Как правило, плазма неустойчива и ее сложно удержать, поэтому первые машины с таким механизмом давались очень сложно. Динамическое газовое зеркало позволяет избежать проблем неустойчивости, потому что построено длинным и тонким, поэтому магнитные линии выстраиваются по всей длине системы. Нестабильность контролируется тем, что позволяет определенному количеству плазмы протекать через узкую часть зеркала.

В 1998 году в рамках эксперимента было продемонстрировано, как GDM производит плазму в процессе работы системы впрыска плазмы, которая работает аналогично передней ячейке VASIMR. Она вводит газ в GDM и нагревает его микроволновой антенной, работающей на частоте 2,45 ГГц. Этот эксперимент проводится для подтверждения обоснованности концепции GDM. Исследователи также разрабатывают полноразмерную систему двигателя с этим механизмом.

Хотя многие передовые концепции двигателей NASA еще далеки от реализации, основа для двигателя на энергии синтеза уже заложена. Когда станут доступны другие технологии, которые сделают путешествие на Марс возможным, корабль с энергией синтеза придется как нельзя кстати. В середине 21 века поездки на Марс могут стать такой же рутиной, как и отправка еды на МКС.

Источник

Как работает ионный двигатель и где он применяется в закладки

Ученые уже придумали или готовятся придумать много новых типов двигателей для космических кораблей. Самые смелые предположения даже говорят про варп-двигатель, который должен разгонять корабль до скоростей, в несколько раз превышающих скорость света за счет искривления пространства в мощном гравитационном поле. Пока это только фантастика, которая скоро может стать перспективой. Зато ионные двигатели уже существуют и даже применяются. Они уже на данном этапе могут развивать скорости в несколько раз выше тех, что предлагают традиционные ракетные двигатели. Правда, они не могут отправить ракету в космос. Вот такие противоречия. Но как же тогда работает ионный двигатель и почему на данном этапе это действительно является технологией будущего?

Как работает ионный двигатель

Принцип работы ионного двигателя простой и сложный одновременно. Он заключается в ионизации газа, который разгоняется электростатическим полем для получения реактивной тяги и разгона космического корабля согласно третьему закону Ньютона.

Топливом или рабочим телом такого двигателя является ионизированный инертный газ (гелий, аргон, неон, ксенон, криптон, оганесон, радон). Впрочем, не все инертные газы стоит использовать в качестве топлива, поэтому, как правило, выбор ученых и исследователей падает на ксенон. Также рассматривается вариант использования ртути в качестве рабочего тела ионного двигателя

Во время работы двигателя в камере образуется смесь из отрицательных электронов и положительных ионов. Так как электроны являются побочным продуктом, их надо отфильтровать. Для этого в камеру вводится трубка с катодными сетками для того, чтобы она притягивала к себе электроны.

Положительные ионы, наоборот, притягиваются к системе извлечения. После чего разгоняются между сетками, разница электростатических потенциалов которых составляет примерно 1 200 Вольт, и выбрасываются в качестве реактивной струи в пространство.

Схематичное изображение работы ионного двигателя.

Электроны, которые попали в катодную ловушку, должны быть удалены с борта корабля, чтобы он сохранял нейтральный заряд, а выброшенные ионы не притягивались обратно, снижая эффективность установки. Выброс электронов осуществляется через отдельное сопло под небольшим углом к струе ионов. Таким образом, что произойдет в их взаимодействии после покидания двигателя, уже не так важно, ведь они не мешают движению корабля.

Преимущества ионного двигателя для космического корабля

Ионы на выходе из двигателя разгоняются до очень высоких скоростей. В своем максимуме они могут достигать 210 км/с. При этом, химические ракетные двигатели не способны достигать и 10 км/с, находясь в диапазоне 3-5 км/с.

Возможность достижения большого удельного импульса позволяет очень сильно сократить расход реактивной массы ионизированного газа в сравнении с аналогичным показателем для традиционного химического топлива. А еще, ионный двигатель может непрерывно работать более трех лет. Энергия, которая нужна для ионизации топлива берется от солнечных батарей — в космосе с этим проблем нет.

Если спешить с ускорением некуда, то ионный двигатель станет отличным вариантом.

Недостатки ионных двигателей

Возможность продолжительной работы ионного двигателя очень важна, так как он не способен развивать высокую тягу и моментально разгонять корабль до больших скоростей. В нынешних реализациях тяга ионных двигателей с трудом достигает 100 миллиньютонов.

Из-за такой конструктивной особенности, как минимум пока, такой двигатель не дает возможности стартовать с другой планеты, даже если у нее очень маленькая гравитация.

Получается, что использование таких двигателей для дальних путешествий пока невозможно без традиционных тяговых установок на химическом топливе. Зато, их совместное использование позволит гораздо более гибко пользоваться ускорением. Например, за счет обычного двигателя разгонять аппарат до более менее высокой скорости, а потом ускоряться еще больше за счет ионного двигателя.

Покорение дальнего космоса без новых технологий невозможно.

По сути, малая тяга на данный момент является главным недостатком таких двигателей, но ученые работают в этом направлении и в перспективе повысят его мощность, так как определенного прогресса удалось добиться уже сейчас.

Где используются ионные двигатели

Вам могло показаться, что ионные двигатели существуют только на бумаге и в лабораториях, но это не так. Они уже использовались, как минимум, в семи завершившихся миссиях и используются минимум в четырех действующих.

В том числе такие двигатели используются в рамках миссии BepiColombo, запущенной 20 октября 2018 года. В этой меркурианской миссии используются 4 ионных двигателя суммарной мощностью 290 миллиньютонов. Кроме этого, аппарат оснащен и химическим двигателем. Оба они в сочетании с гравитационными маневрами должны обеспечить выход корабля на орбиту Меркурия в качестве искусственного спутника.

Космический аппарат BepiColombo.

Использованием этих двигателей не брезгует и Илон Маск в своей программе Starlink, за счет этих двигателей корабль должен совершать небольшие маневры и уклоняться от космического мусора.

Сейчас планируется доставка на МКС ионной тяговой установки, которая позволит управлять положением станции в автоматическом режиме. Ее мощность подобрана исходя из доступной электрической мощности станции. Для большей надежности планируется так же доставка батарей, которые обеспечат 15 минут автономной работы двигателя.

Но самым необычным проектом был ”Прометей”. Корабль в рамках этого проекта планировалось отправить к Юпитеру со скорость 90 км/c. Ионный двигатель корабля должен бал работать от ядерного реактора, но из-за технических трудностей в 2005 году проект закрыли.

Когда изобрели ионный двигатель

При всей перспективности ионного двигателя, первый раз его концепцию предложил еще в 1917 году Роберт Годдард. Только спустя почти 40 лет Эрнст Штулингер сопроводил концепцию необходимыми расчетами.

В 1957 году вышла статья Алексея Морозова под названием ”Об ускорении плазмы магнитным полем”, в которой он описал все максимально подробно. Это и дало толчок к развитию технологии и уже в 1964 году на советском аппарате ”Зонд-2” стоял такой двигатель для маневров на орбите.

Первый аппарат в космосе с ионным двигателем.

По сути, ионный двигатель является первым электрическим космическим двигателем, но его надо было дорабатывать и совершенствовать. Этим и занимались долгие годы, а в 1970 году прошло испытание, призванное продемонстрировать эффективность долговременной работы ртутных ионных электростатических двигателей в космосе. Показанный тогда малый КПД и низкая тяга надолго отбили желание американской космической промышленности пользоваться такими двигателями.

В СССР разработки продолжались и после этого времени. И европейское, и американское космические агентства вернулись к этой идее. Сейчас исследования продолжаются, а выведенные на орбиту образцы двигателей, хоть и не могут быть главным тяговым элементом управления, но зато проходят ”проверку боем”. Собранная информация позволит увеличить мощность ионного двигателя. По разной информации, так удалось увеличить тягу самого мощного подобного двигателя более чем до 5 Н. Если это так, то все действительно не зря.

Читайте также:  Размеры двигателя мотоцикла урала

Источник

Куда катится автомобиль?

Михаил Самохин, руководитель аналитической группы AD Wiser

Автомобиль очень молод. Как средство транспорта он находится «на пороге совершеннолетия», только-только перестав быть «подростком». И основные узлы, и конструкции этого железного организма изобретены ещё в ту, в его младенческую пору. А значит, история автомобиля только начинается и много её любопытных страниц нам предстоит прочитать в совсем недалёком будущем.

В «детстве» автомобиль был неказистой, но очень дорогой игрушкой. Его отец локомобиль, по воспоминаниям Генри Форда, напоминал помесь локомотива, асфальтового катка и трактора, но тем не менее активно использовался в промышленности.

С заменой паровой машины на компактный бензиновый двигатель внутреннего сгорания автомобиль, собственно, и стал тем, каким мы его знаем. Впрочем, история парового двигателя на этом не прервалась. Великолепные паровые автомобили бегали по улицам ещё в тридцатые годы прошлого века, был даже сконструирован самолёт с паровым двигателем — и летал! Электромобили тоже идея не сегодняшняя, такси и автобусы на электрической тяге возили пассажиров ещё в начале XX века и в России и в США. Эксплуатационные параметры паро-, электро- и бензоавтомобилей были вначале примерно одинаковы: скорость и дальность пробега невелики, а техническая сложность создавала владельцу массу проблем. Относительно бесшумные электромобили мгновенно запускались и хорошо разгонялись с места. Владельцам паровых приходилось растапливать котёл и чистить регулярно засоряющуюся топку, зато эти машины были нетребовательны к топливу. Бензиновые автомобили, шумные и пожароопасные, смогли стать гораздо удобнее после того, как Чарльз Кеттеринг изготовил и запатентовал стартёр — электрический запуск бензинового мотора, а Луи Рено снабдил свою самодвижущуюся коляску коробкой передач. Поэтому в соревновании двигателей бензинового, парового, электрического и дизеля в тот момент вышел победителем именно бензиновый.

На заре века бензиновый автомобиль — быстрое, лёгкое, а также капризное и ненадёжное чудо техники, способное обогнать конный экипаж, — был по карману лишь немногим богатым покупателям. Один из крупнейших автомобильных торговцев, владелец виллы «Мерседес» в Ницце Эмиль Еллинек, продал в 1903 году головокружительное число автомобилей — 140 штук. Автовладельцами становились преимущественно знатные семьи, богатые коммерсанты и промышленники. Эта категория покупателей была склонна видеть в автомобиле модернизированный аналог дорогой скаковой лошади, поэтому первые пятьдесят лет автомобильной истории — это история гонок, рекордов и гонщиков со звучными титулами и крупными состояниями.

Лозунг «Автомобиль не роскошь, а средство передвижения», как любая шутка, содержит долю шутки, но в целом фиксирует вполне серьёзный эволюционный виток в отношении к автомобилю в XX веке. Родившись как штучная, сложная в эксплуатации и сверхдорогостоящая конструкция, автомобиль за сто лет эволюционировал радикально. Он постепенно, но неуклонно превращается из «железного коня» в компактное, высоко энерговооружённое бытовое устройство, в котором собственно металла остаётся все меньше и меньше, а инженерных решений и хайтека всё больше.

Что же мы, скорее всего, увидим в ближайшем будущем автомобиля, скажем, через 10 лет?

Одноразовость. Рост надёжности машины сопровождается снижением ремонтопригодности. Кто сегодня понесёт ремонтировать, например, магнитолу или аудиосистему? Во-первых, они не ломаются, а, во-вторых, если сломались, то отправляются на свалку. То же верно в отношении машин. Расхожая мысль «Прежде делали “вечные” автомобили, а сегодня они пластмассовые и разваливаются» — это миф. Да, сегодняшний автомобиль не собирается жить вечно, но зато за свой расчётный срок службы проезжает такое расстояние, которое лет тридцать назад невозможно было даже представить. На современной малолитражке среднего ценового сегмента вполне реально объехать вокруг света без специальной подготовки.

Топливная эффективность. Гонка между дорожанием топлива и ростом КПД всех систем автомобиля приводит к любопытным последствиям. Если лет двадцать назад нормальным расходом топлива для городского автомобиля были 12 л на 100 км, то сегодня 6—7 л на сотню — вполне обычное явление. В Китае установлены требования топливной экономичности, которым должен соответствовать каждый сходящий с конвейера китайский автомобиль, — 6,9 л на 100 км пути; к 2020 году планируется довести этот показатель до 5 л на 100 км. Аналогичные нормативы существуют в Европе, США и Японии. В недалёкой технологической перспективе просматривается топливная эффективность автомобиля порядка одного литра на сотню километров, а это значит, что стоимость топлива перестанет быть значимой для владельца машины.

Безопасность. Становясь легче, автомобиль становится и безопаснее. Характеристики мощности и скорости выросли настолько, что дальше увеличивать «тяговые» возможности автомобиля бессмысленно. Поэтому формируются новые инженерные приоритеты, среди прочего — снижение риска для участников дорожного движения. Многочисленные системы экспертизы безопасности автомобиля включают уже оценку его безопасности не только для водителя и пассажиров, но и для пешеходов. Перестают быть экзотикой подушки безопасности, оберегающие жизнь пешехода.

Интеграция в среду. Автомобиль больше не рассматривается вне дорожной инфраструктуры, сложная интеллектуальная система «дорога — автомобиль — водитель» эволюционирует как единое целое.

Сценарии «потребления автомобиля». Уходит в прошлое концепция универсального автомобиля, на котором «и в пир и в мир», ей на смену приходит понятие семейного парка автомобилей — на разные случаи жизни, как одежда или обувь. Строго говоря, грузовые и специальные автомобили — пожарные, медицинские, почтовые — это тоже лишь дополнительные сценарии использования машины.

Автомобиль становится красивее. Это должно беспокоить: обычно максимального изящества рукотворный предмет достигает незадолго до своего ухода со сцены. Вспомните парусники, кареты, ламповые радиоприёмники, патефоны. С другой стороны, беспокоиться пока рано: массовый автомобиль всё ещё довольно уродлив.

А как же экологичность? Этот модный тренд довольно искусственный. Экологические требования и стандарты — побочный эффект требований к экономичности двигателя и повышению дорожной безопасности (снижение скорости и повышение КПД приводят к снижению выхлопа). Когда мы дышим грязью и копотью, дело не столько в «грязных» автомобилях, сколько в более масштабной российской проблеме — в отчуждении жителей от среды обитания. Население мегаполиса воспринимает его не как место для жизни, а как машину для извлечения прибыли и власти, которые не нам принадлежат и не нами контролируются. Сделав мегаполис в принципе удобным местом для жизни, легко в разы снизить концентрацию автомобильного выхлопа, не меняя парк автомобилей.

Автоматизация и компьютеризация. Робомобили уже существуют, даже российской разработки. Главное, что ограничивает их развитие, это не стоимость, как можно было бы предположить, а юридическая коллизия, которую создаёт присутствие на дороге транспортного средства, не управляемого человеком: вопрос об ответственности. Эта проблема, скорее всего, решится в течение трёх—пяти лет.

Электромобили. В первом полугодии 2013 года электромобилей Tesla в США будет продано больше, чем каждого из брендов большой немецкой тройки. Электродвигатель гораздо проще бензинового, с гораздо более выгодными тяговыми характеристиками, компактнее и надёжнее (вспомните, сколько времени работают электромоторы лифтов в домах, их никто не чинит, просто время от времени заменяют). Новые мощные и лёгкие электродвигатели и новые суперъёмкие батареи появились в течение пяти лет после того, как рынок начал предъявлять на них спрос. Проблема пока в средствах накопления энергии. Компактные, достаточно мощные, лёгкие и дешёвые аккумуляторы, способные запасти объём энергии, сравнимый с несколькими десятками литров бензина, будут разработаны в течение пяти—десяти лет. Другая проблема — процедуры зарядки, здесь тоже уже есть ряд решений.

Гибриды. Это промежуточный вариант, когда в качестве тягового двигателя используется электромотор, а электроэнергия для него производится непосредственно «на борту» с помощью двигателя внутреннего сгорания.

Серийно гибридные автомобили начали выпускать не так давно, с 1997 года, когда на конвейер встала Toyota Prius первого поколения. Но технически первый гибридомобиль появился ещё в 1901 году — это был полноприводный Lohner Porsche, в котором от двух бензиновых двигателей работали два электрогенератора, подавая ток в четыре электродвигателя, расположенные в колёсах, а излишек энергии накапливался в аккумуляторах.

А кстати, что ждёт автомобиль там, в отдалённом будущем? Включим воображение, тем более что это совсем не фантастика.

Автомобиль превратился в гаджет, бытовой прибор вроде магнитолы, телевизора, компьютера или стиральной машины. Он так же продаётся, эксплуатируется и утилизируется и примерно столько же стоит. (Показательно, что в мероприятии Mobile World Congress — крупнейшей профессиональной выставке, где ежегодно меряются гаджетами глобальные бренды, уже сейчас, в 2013 году, впервые участвовал автомобильный гигант «Форд».)

Сращивание общественного транспорта, такси, прокатного автомобиля, роботизация и компьютеризация автомобиля, дороги и трафика в целом сделали перемещение в автомобиле похожим на поездку в лифте. Кто обсуждает стоимость эксплуатации, опасность или потребительские преимущества лифтов? Они просто существуют и возят нас.

Парк автомобилей стал гораздо разно-образнее в отношении конструкций двигателей и источников топлива и энергии, но уже поговаривают о единой и суперэффективной конструкции, которая должна родиться из этого разнообразия.

Среди любителей популярен «бестопливный автомобиль» — лёгкий, с очень высоким КПД, получающий необходимое количество энергии от солнечной батареи (как у карманного калькулятора 1980-х годов) или от «карманного» устройства, генерирующего электроэнергию на борту. Эту энергию накапливают суперэффективные батареи, обеспечивая необходимый дневной пробег. (Собственно говоря, таким электромобилем был «Луноход-1», заряжавшийся днём и выполнявший работу, пока не иссякнет заряд батарей.)

Условия труда, производства и структуры занятости изменились так, что непроизводительных маятниковых перемещений по городским радиусам (на работу и с работы) почти не осталось, резко снизился суточный пробег автомобиля.

Уже сейчас исследования социологов в США показывают, что в обществе снижается число молодых людей, имеющих водительские права и желающих водить машину. Американская «Frontier Group», на основании проведённого в 2013 году масштабного социологического исследования, прогнозирует конец автомобильного бума, начавшегося в США в середине ХХ века. Хорошо развитая система общественного транспорта, свободная занятость, работа и жизнь там, где больше нравится, могут значительно снизить потребность в поездках.

Кроме того, покупатель автомобиля стареет: крупное маркетинговое агентство CNW, специализирующееся на прогнозах для автопрома, отмечает, что среди американских подростков растёт доля тех, кто не торопится получить водительские права. Крутить баранку — это уже не по-хипстерски, то ли дело смартфоны или планшеты.

Как ни трудно сегодня это представить, но автомобиль, ставший средством и символом свободы в индустриальном обществе, в постиндустриальном может утратить свою культовую роль.

Источник

Автомобили слишком тяжелы

В материалах рубрики использованы сообщения следующих журналов: «Economist», «Fortean Times» и «New Scientist» (Великобритания), «Geo» (Германия), «IEEE Spectrum», «Mental Floss», «Science News» и «Scientific American» (США), «La Recherche», «Sciences et Avenir» и «Science et Vie» (Франция).

Американский журнал «IEEE Spectrum» проанализировал изменения веса различных средств транспорта, в основном автомобилей, за последние сто лет.

Первая модель автомобиля «Форд» вырабатывала один ватт мощности на каждые 12 граммов веса своего двигателя. Прошло сто лет — и в современных двигателях внутреннего сгорания каждый грамм мотора даёт один ватт. Но за тот же период мощность среднего двигателя выросла почти в 12 раз — с 15 до 170 киловатт, соответственно и двигатель не стал легче. А сам автомобиль за эти сто лет утяжелился значительно, несмотря на применение алюминия, магниевых сплавов, титана, пластмасс и даже композитов. Так, если «Форд-Т» весил 880 кг, то современный «Форд-Фокус» — около 1,3 тонны.

Продолжение статьи читайте в номере журнала

Источник

Двигатели и движители

История развития техники неразрывно связана с непрекращающимися поисками наиболее эффективных способов передвижения. Чтобы понять и оценить достижения сегодняшнего дня, необходимо иметь представление и о «дне вчерашнем».

Идея об устройстве, которое могло бы приводить в движение машины, не используя мускульную силу людей и животных, энергию ветра и движущейся воды, впервые возникла в Индии в XII веке.

Существование вечного движения в природе со средневековой точки зрения неопровержимо свидетельствовало о возможности создания искусственного вечного движения – «perpetuum mobile artificae». Следовало только найти способ перенести существующие в природе явления на искусственно созданные машины.

Статья «Двигатели и движители» (формат PDF, 177 кб) рассказывает о том как повлияли дискуссии о вечном двигателе на развитие физики, термодинамики и энергетики. Описана история появления тепловых двигателей и их внедрения в производство.

Рассмотрена кинематическая схема работы двигателя Стирлинга. Эффективный КПД двигателя в 2. 4 раза превосходит КПД двигателей внутреннего сгорания. Внутренний объем двигателя Стирлинга герметичен, поэтому он защищен от загрязнения пылью и продуктами сгорания. Он бесшумен т.к. не имеет выхлопа и не глохнет при перегрузках. Способ внешнего подвода тепла обусловливает важную особенность двигателя Стирлинга – всеядность. Он может работать на любом топливе или использовать энергию солнечных лучей.

Источник

Как работает «вечный двигатель» и примеры его конструкции

Вечный двигатель будоражит умы ученых и изобретателей всего мира. Сейчас многие одержимы им примерно так же, как в свое время алхимики были одержимы идеей получения золота из свинца. Все из-за того, что он — вечный двигатель — принесет очень много пользы не только в краткосрочной перспективе, но и на далекое будущее. Главное понимать, что вечный двигатель это не совсем то, что многие себе представляют. Это куда более продвинутая вещь, но в то же время более простая, чем принято считать. А еще есть несколько концепций такого двигателя. Давайте разберемся с некоторыми из них.

Вечный двигатель это то, что невозможно даже в теории. Он противоречит сам себе.

Можно ли запатентовать вечный двигатель

Прежде всего стоит определится, что запатентовать вечный двигатель невозможно. То есть, если вы найдете способ обмануть законы физики, вам, конечно, скажут спасибо, но коммерческих прав на свое изобретение вы иметь не будете. Максимум, вы получите Нобелевскую премию и сможете рассчитывать на всемирное уважение. Если вас это устраивает — стоит постараться и поработать в этом направлении.

Патенты на вечный двигатель перестали рассматриваться очень давно. Например, Патентное ведомство США не принимает такие заявки уже более ста лет, а Парижская академия наук с 1775 года не рассматривает проекты таких двигателей.

Что такое вечный двигатель

Если говорить о том, что такое вообще вечный двигатель, то все основные определения сводятся к тому, что это воображаемое устройство, которое работает неограниченно долго. А самое главное, у него должен быть КПД более 100%. То есть количество выдаваемой им энергии должно быть больше, чем та, которую он потребляет для работы. Это вечный двигатель первого рода.

На латыни вечный двигатель будет Perpetuum Mobile

Есть еще понятие вечного двигатель второго рода. Такой механизм должен получать тепло от одного резервуара и полностью превращать его в работу. Такой тип вечного двигателя невозможен по определению, так как это противоречит первому и второму закону термодинамики.

Может показаться, что космос в некотором роде можно назвать системой вечного двигателя, но это тоже не так. Светила рано или поздно погаснут, а планеты, спутники и галактики, которые движутся в пространстве, только кажутся вечными. На самом деле они постепенно рассеивают свою кинетическую энергию за счет сопротивления солнечного ветра, притяжения других объектов, теплового излучения и даже гравитационных волн.

Эта штука миллиарды лет крутится сама по себе, но она не может считаться вечным двигателем.

В космосе это почти незаметно, так как расстояние и размеры тел огромны, а силы сопротивления минимальны, но потеря энергии все равно есть. Проще говоря, если дать нашей планете бесконечное количество времени вращения, исключив изменения остальных факторов, рано или поздно она просто остановится. На самом деле все немного сложнее и в реальности ее притянет к Солнцу, но суть вы поняли.

Рев двигателей и комендантский час: как SpaceX вынудила жителей Техаса продать свои дома

Можно сказать, что двигатель тоже рано или поздно остановится, если дать ему бесконечно много времени (все равно мы не проверим), но именно для этого и есть требование, что вечный двигатель должен производить больше энергии, чем потреблять. Даже если он будет вырабатывать на ничтожную долю процента больше энергии, чем заберет, он сам сможет обеспечить себя ”топливом”.

Немного юмора на тему вечного двигателя. Вот он!

Как сделать вечный двигатель

В мире было предпринято бесчисленное количество попыток сделать вечный двигатель. Конструкции предлагались самые разные, но объединяло их одно — все они не прошли проверку и не стали настоящим вечным двигателем. Хотя, на первый взгляд может показаться, что некоторые предложенные ниже конструкции будут работать, но это ошибка. Максимально близко к настоящей концепции вечного двигателя может приблизиться конструкция магнитного двигателя.

Вечный двигатель на магнитах

Конструкция вечного двигателя на магнитах может показаться простой и гениальной одновременно, но в ней есть одно ”но”. Прежде всего, магнит, даже самый хороший, не может давать энергию бесконечно и его сила магнетизма со временем будет уменьшаться. В итоге, двигатель просто перестанет работать. Хотя изначально идея действительно не плохая.

Идея вечного двигателя стала активизироваться в умах изобретателей с появленим неодимовых магнитов. Их пытались применить где угодно, а Майкл Брэди даже сделал двигатель, который запатентовал, хоть и не как вечный.

Такие вещи немного завораживают:

Суть в том, что магнит притягивает расположенные на вращающемся колесе ответные части и проводит конструкцию в движение. Конструкция проста и незамысловата, но даже если не учитывать потери от трения или просто исключить их, поместив систему в вакуум, двигатель все равно не будет вечным. Как раз из-за того, что магниты со временем теряют свои свойства.

Первый вечный двигатель

В любом деле кто-то должен быть первым. Пионер был и в ”вечнодвигателестроении” — им стал индийский математик Бхаскара. Упоминание вечного двигателя встречается в его рукописях, которые датируются XII веком.

В этих рукописях математик описывает механизм, который приводится в движение за счет перетекания ртути или другой жидкости внутри трубочек, которые надо разместить по окружности колеса. Конструкция выглядит перспективной из-за того, что жидкость на одной стороне колеса всегда будет находиться дальше от его центра.

Примерно так выглядел концепт первого вечного двигателя.

В реальности такая система не работает. Если сделать только две трубочки на разных сторонах колеса, то его действительно перевесит, но когда их много, разное положение жидкости в каждом все равно уравновесит систему и вращения не будет.

У Бхаскара были последователи, которые предлагали вместо жидкости использовать меняющие свое положение грузы. Кончено, все эти проекты были обречены на провал и постепенно первоначальная идея конструкции вечного двигателя сменялась другими.

Одна из вариаций на тему вечного двигателя Бхаскара.

Вечный двигатель Архимеда

На самом деле сам Архимед не изобретал никакого вечного двигателя. Он только сформулировал закон, согласно которому и работает следующая система. С этим законом знаком каждый, кто хоть раз бросал в воду мяч, поплавок или другой надувной предмет.

Так как то, что весит меньше, чем вода, выталкивается ей, это тоже можно использовать в качестве вечного двигателя и подобные концепты были. Например, можно попробовать поместить в систему шарики, которые будут всплывать из воды и раскручивать двигатель.

В этой конструкции не учтено только то, что невозможно сдержать выду в резервуаре, а если и возможно, то она будет давить на входящие поплавки с такой силой, которую не смогут компенсировать всплывающие.

Проблема в том, что в замкнутой системе ”отработанные” шарики надо снова погружать в воду, а на это нужно больше энергии, чем появляется при всплывании. Именно поэтому система почти моментально придет в равновесие и перестанет двигаться. Если только не заставить жидкость находиться с одной стороны, то удержать ее без потерь будет невозможно. Если ее постоянно подливать, то такой механизм уже не будет соответствовать основным требованиям, предъявляемым к вечному двигателю.

Самая большая подводная лодка и история создания субмарин

Вечный двигатель на противовесах

Еще одна система вечного двигателя подразумевает использование смещенной системы, в которой подвешенные на цепь грузы должны тянуть за собой всю конструкцию.

Вот так должна выглядеть эта система и крутиться против часовой стрелки, но она очень быстро придет в состояние равновесия.

Такую конструкцию предложил нидерландский математик Симон Стевин. В цепочку должны быть объединены 14 шаров. Эту цепочку надо перекинуть через треугольную призму. Согласно задумке, с одной стороны будет в два раза больше шаров и они будут тянуть всю систему. При этом шары, которые висят снизу, не участвуют в процессе, так как уравновешены и не должны мешать работе на призме.

Звучит здорово и логично, но та часть системы, где шаров в два раза больше, имеет более пологую плоскость и составляющая силы тяжести шаров с этой стороны будет меньше. В итоге, система опять придет в равновесие и быстро остановится.

Это тоже не вечный двигатель, а просто игрушка, так как кинетическая энергия будет теряться.

Почему невозможно создать вечный двигатель

В первую очередь, создание вечного двигателя невозможно из-за того, что он нарушает многие сформулированные и проверенные столетиями (и тысячелетиями) законы физики. Выработать в результате движения больше энергии, чем затрачено на приведение системы в движение, просто невозможно.

С другой стороны, многое раньше считалось невозможным. Вдруг человечество так до сих пор и не смогло найти фундаментальную ошибку ученых прошлого? Если вы хотели попробовать — попробуйте! Если не хотели заниматься этим, но у вас есть идея, которой вы готовы поделиться, то сделайте это в нашем Telegram-чате или в комментариях к статье.

Новости, статьи и анонсы публикаций

Свободное общение и обсуждение материалов

Прошло сто лет с тех пор, как Альберт Эйнштейн опубликовал свои первые работы с изложением венца своей интеллектуальной деятельности, общей теории относитель…

Понимание природы жизни является одной из самых сложных и одновременно интересных загадок для человечества. Со временем эта загадка неизбежно вышла за рамки …

Есть легенда, что Альберт Эйнштейн провел свои последние часы на Земле, вычерчивая что-то на листке бумаги в последней попытке сформулировать теорию всего. С…

Источник

Как будет работать электромагнитный двигатель космического аппарата в закладки

В течение многих десятилетий единственным средством космических путешествий были ракетные двигатели, которые работали на реактивном движении. Сегодня, в начале 21 века, аэрокосмические инженеры разрабатывают инновационные способы, которые смогут унести нас прочь к звездам, в том числе двигатели на энергии термоядерного синтеза и антивеществе. Однако есть и другие типы. Тип космического корабля, который будет проталкиваться в космос электромагнитами, может увезти нас дальше, чем любой из перечисленных методов.

При охлаждении до чрезвычайно низких температур электромагниты демонстрируют необычное поведение: в течение первых нескольких наносекунд после применения к ним электричества они вибрируют. Дэвид Гудвин, менеджер по программам Министерства высоких энергий и ядерной физики США, еще несколько лет назад предположил, что если эту вибрацию направить в одном направлении, она предоставит достаточный толчок для того, чтобы отправить космический корабль дальше и быстрее в космос, чем любой из методов движения, которые находятся в разработке.

8 июля 2001 года Гудвин представил свою идею на конференции в Солт-Лейк-Сити. Давайте разберемся, как могла бы работать электромагнитная силовая установка Гудвина и как она однажды может стать основой для космолетов будущего.

Толчок в космос

Американское министерство энергетики (DOE), как правило, не занимается разработкой двигательных установок для NASA, однако постоянно работает над созданием сверхпроводящих магнитов и очень быстрых и мощных твердотельных переключателей. В середине 90-х годов Гудвин организовал проект в NASA, в рамках которого нужно было продумать систему двигателя без ракетного топлива, которая использовала бы потенциал высоких энергий и преодолела инерцию.

«Казалось, что есть какой-то способ использовать эту технологию, если объединить ученых DOE и цели NASA, и в принципе, отсюда все и пошло», — говорил Гудвин. От DOE была идея Гудвина использовать в двигательной установке космического корабля переохлажденные сверхпроводящие магниты, вибрирующие 400 000 раз в секунду. Если этот мощный импульс направить в одну сторону, можно создать крайне эффективную двигательную установку со способностью набрать скорость порядка одного процента от световой.

Чтобы магнит вибрировал, нужно вызвать асимметрию в магнитном поле. Гудвин планировал вводить металлическую пластину в магнитное поле для улучшения колебательных движений. Эта пластину могла быть из меди, алюминия или железа. Алюминиевые и медные пластины лучше проводят и лучше влияют на магнитное поле. Пластина будет заряжена и изолирована от системы, чтобы создать асимметрию. После пластина будет терять электричество в течение нескольких микросекунд, чтобы магнит колебался в нужном направлении.

«И вот, вопрос в том, можем ли мы использовать это нестабильное состояние так, чтобы двигаться в одном направлении?», — спрашивает Гудвин. — «Здесь момент очень спорный. Именно поэтому мы хотели провести эксперимент». В сотрудничестве с Boeing, Гудвин ждет финансирования от NASA, чтобы провести этот эксперимент.

Ключевой деталью системы является твердотельный переключатель, который стал бы посредником для электричества, посылаемого от источника питания к электромагниту. Этот переключатель по большей части включает и выключает электромагнит 400 000 раз в секунду. Твердотельный переключатель выглядит как негабаритный компьютерный чип — представьте себе микропроцессор размером с хоккейную шайбу. Его работа в том, чтобы взять стабильное питание и превратить его в мощный импульс с частотой 400 000 раз в секунду на 30 ампер и 9000 вольт.

Откуда возьмется это питание?

За пределы Солнечной системы

Министерство энергетики США также работало над планами по созданию ядерного космического реактора для NASA. Гудвин считает, что этот реактор можно использовать для питания системы электромагнитного движения. Министерство энергетики работало над обеспечением финансирования и 300-киловаттным реактором, который мог стать реальностью к 2006 году. Силовая установка преобразовывала бы тепловую энергию, вырабатываемую реактором, в электроэнергию.

Реактор способен вырабатывать питание в процессе индуцированного ядерного деления, которое производит энергию, расщепляя атомы (к примеру, уран-235). Когда распадается один атом, он выпускает большое количество тепла и гамма-излучения. Полкило обогащенного урана используется для питания атомной подводной лодки или атомного авианосца и с успехом заменяет 3,8 миллиона литров бензина. Полкило урана размером с мячик для гольфа может находиться на космическом корабле в течение довольно длительного времени, особо не занимая места.

Тепловая энергия из ядерного реактора отлично подойдет для питания космического корабля.

«Вы не доберетесь до ближайшей звезды, но слетать к гелиопаузе — вполне», — говорит Гудвин. — «Если все пойдет хорошо, можно набрать скорость в один процент от световой. Даже с такой скоростью добраться до ближайшей звезды можно было бы за сотни лет, что довольно непрактично».

Гелиопауза — это пункт, в котором солнечный ветер от Солнца встречается с межзвездным солнечным ветром, созданным другими звездами.

Для того, чтобы перевозить людей, должно быть построено крупное устройство, однако электромагнит совсем небольших размеров мог бы подтолкнуть небольшой исследовательский корабль на довольно большую дистанцию. Система, согласно Гудвину, чрезвычайно эффективна. Вопрос в том, смогут ли ученые конвертировать энергию движения, не разрушив сам магнит. Быстрая вибрация, скорее всего, поставит магнит перед вопросом быть или не быть.

Скептики говорят, что Гудвин сможет заставить магнит вибрировать быстро и часто, но это ни к чему не приведет. Гудвин признает, что нет никаких доказательств, что его силовая установка будет работать. Но один шанс из десяти есть. В конце концов, еще сто лет назад люди были твердо уверены, что мы никогда не доберемся до космоса.

Источник

ДОБРО ПОЖАЛОВАТЬ В «МИР ОТКРЫТИЙ»

Становление этого «мира» началось восемь лет назад, когда директор ВДНХ (ныне генеральный директор ВВЦ) В. А. Саюшев и зам. министра по науке и технике И. М. Бортник поставили перед ученым-физиком В. Е. Махоткиным задачу: превратить здание павильона в городок занимательной науки и техники. Необходимо было не просто скопировать многочисленные зарубежные технопарки, но сделать это по-нашему.

Слово директору Объединенного павильона «Мир открытий» доктору физико-математических наук Вячеславу Евгеньевичу Махоткину:

На этом празднике науки юные изобретатели из ближнего и дальнего зарубежья представят свои научные и технологические проекты. Уже получены заявки на участие из ЮАР, Франции, Канады, Алжира, Мексики, Чехии, Словакии, стран СНГ. Кроме того, приглашены 70 станций юных техников, действующие в России. Активное участие в этом фестивале примет Международное движение по организации научно-технического досуга МИЛСЕТ (директор представительства МИЛСЕТ в Москве Т. В. Шматкова).

Второе. Мы приглашаем «взрослых» разработчиков в области научно-технического досуга. В этой части также ожидается настоящий парад изобретений, в числе которых головоломки, волчки, мыльные пузыри, дидактические игрушки, забавные конструкции и даже вечные двигатели! Будут широко представлены информационные технологии научно-технического досуга, программное и аппаратное обеспечение.

Фестиваль приурочен ко времени проведения первых Всемирных Юношеских Игр и состоится 11-19 июля 1998 года.

Пользуясь моментом, приглашаю всех читателей журнала «Наука и жизнь» на этот наш общий интеллектуальный праздник».

Вот в аквариуме, изготовленном из плоской стеклянной бутылки, разворачивается погоня и происходит борьба с явно драматическим исходом каких-то фантастических существ (оказывается, это так ведет себя кучка железных опилок в жидкости под влиянием изменяющегося магнитного поля).

Красивые динамичные картины можно создавать с помощью сосудов, содержащих несмешиваемые жидкости.

Вот электронные часы, использующие вместо батареек обычное яблоко.

Талантливые инженеры, сотрудники «Мира открытий» Ю. Г. Ивченко, Ю. И. Смирнов, В. Ф. Дубравин, С. Ю. Солнцев и другие своими руками изготовили эти «чудеса на физических принципах».

Величественно плывет без опоры, медленно поворачиваясь, довольно массивный прозрачный глобус. Его создатель Ю. И. Смирнов использовал принцип воздушной подушки.

Здесь можно не только пополнить свои знания по физике, но и приобрести умную игрушку, головоломку, сувенир.

Но обратимся теперь непосредственно к экспонатам, представленным на первой странице обложки и на 6-7-й стр. цветной вкладки.

Сеанс левитации

Уважаемые юные читатели журнала, обратите внимание на фотографию на первой странице обложки. Это снимок с натуры без всяких монтажных ухищрений. Что бы это значило? Воздушная подушка здесь ни при чем: ладонь не ощущает никаких потоков воздуха.

Подсказка: ответ надо искать не в многочисленных ныне книгах по парапсихологии, а в обычных учебниках физики.

И снова perpetuum mobile

Первые дошедшие до нас проекты вечных двигателей относятся к XIII веку н. э. С тех пор и до наших дней над этой идеей трудились и многие маститые ученые, и безвестные ремесленники. Стоило ли им заниматься вечными двигателями, если они невозможны, если сама идея являлась неосуществимой?

История человеческой цивилизации показывает, что на ее развитие оказали существенное влияние «великие заблуждения», сопутствующие познанию человеком окружающего мира.

Пять столетий назад в поисках новых путей в Индию морскими путешественниками была открыта Америка.

В поисках «философского камня» средневековые алхимики усовершенствовали технику химического эксперимента, сделали множество ценных открытий и подготовили фундамент современной химии.

Наблюдения средневековых астрологов способствовали изучению картины звездного неба, созданию и совершенствованию астрономических приборов.

Наиболее прозорливые ученые использовали негативный опыт предшественников и свои интуитивные догадки о невозможности вечного двигателя для доказательства многих законов физики.

Одним из первых осознал важность проблемы вечного движения для науки голландский математик Симон Стэвин, которого называли истинным homo universalis эпохи Возрождения. В частности, он впервые сформулировал (1586 г.) закон равновесия тел на наклонной плоскости, исходя из предположения, что вечного двигателя не существует. Родоначальник теории паровых машин Никола Сади Карно в своей книге «Размышления о силе огня» (1824 г.) заложил основы Второго начала термодинамики, сформулированного затем Рудольфом Клаузиусом (1850 г.), также основываясь на постулате о невозможности вечного двигателя. Эту же аксиому использовал для доказательства Первого закона термодинамики Герман Гельмгольц в своей работе «О сохранении силы» (1847 г.).

Интересно отметить, что эти открытия были сделаны Стэвином в 38 лет, Карно в 28 лет, Клаузиусом в 28 лет, Гельмгольцем в 26 лет.

Редакция журнала «Наука и жизнь» предлагает своим читателям принять участие в этом конкурсе. Мы будем болеть за вас!

Солнечный волчок

Этот волчок со стеклянным линзообразным маховиком неутомимо движется, пока на него падает свет. Нам на мгновение удалось остановить его, чтобы сфотографировать. Как только сработала лампа-вспышка, волчок встрепенулся и продолжил свою замысловатую пляску.

Фабрика мыльных пузырей

Мыльный пузырь. Красивый, но не долговечный. Казалось бы, ну какое может быть ему практическое применение? Ведь это символ бесполезности.

Мои опасения, что пузыри могут заполнить все пространство комнаты, оказались напрасными: эта фабрика, как и всякое серьезное производство, автоматически регулируется с помощью «отрицательной обратной связи». В результате за единицу времени производится ровно столько мыльных пузырей, сколько лопается, так что общее количество пены находится в заданных пределах.

Источник

Как работает «вечный двигатель» и примеры его конструкции в закладки

Вечный двигатель будоражит умы ученых и изобретателей всего мира. Сейчас многие одержимы им примерно так же, как в свое время алхимики были одержимы идеей получения золота из свинца. Все из-за того, что он — вечный двигатель — принесет очень много пользы не только в краткосрочной перспективе, но и на далекое будущее. Главное понимать, что вечный двигатель это не совсем то, что многие себе представляют. Это куда более продвинутая вещь, но в то же время более простая, чем принято считать. А еще есть несколько концепций такого двигателя. Давайте разберемся с некоторыми из них.

Можно ли запатентовать вечный двигатель

Прежде всего стоит определится, что запатентовать вечный двигатель невозможно. То есть, если вы найдете способ обмануть законы физики, вам, конечно, скажут спасибо, но коммерческих прав на свое изобретение вы иметь не будете. Максимум, вы получите Нобелевскую премию и сможете рассчитывать на всемирное уважение. Если вас это устраивает — стоит постараться и поработать в этом направлении.

Патенты на вечный двигатель перестали рассматриваться очень давно. Например, Патентное ведомство США не принимает такие заявки уже более ста лет, а Парижская академия наук с 1775 года не рассматривает проекты таких двигателей.

Что такое вечный двигатель

Если говорить о том, что такое вообще вечный двигатель, то все основные определения сводятся к тому, что это воображаемое устройство, которое работает неограниченно долго. А самое главное, у него должен быть КПД более 100%. То есть количество выдаваемой им энергии должно быть больше, чем та, которую он потребляет для работы. Это вечный двигатель первого рода.

На латыни вечный двигатель будет Perpetuum Mobile

Есть еще понятие вечного двигатель второго рода. Такой механизм должен получать тепло от одного резервуара и полностью превращать его в работу. Такой тип вечного двигателя невозможен по определению, так как это противоречит первому и второму закону термодинамики.

Может показаться, что космос в некотором роде можно назвать системой вечного двигателя, но это тоже не так. Светила рано или поздно погаснут, а планеты, спутники и галактики, которые движутся в пространстве, только кажутся вечными. На самом деле они постепенно рассеивают свою кинетическую энергию за счет сопротивления солнечного ветра, притяжения других объектов, теплового излучения и даже гравитационных волн.

Эта штука миллиарды лет крутится сама по себе, но она не может считаться вечным двигателем.

В космосе это почти незаметно, так как расстояние и размеры тел огромны, а силы сопротивления минимальны, но потеря энергии все равно есть. Проще говоря, если дать нашей планете бесконечное количество времени вращения, исключив изменения остальных факторов, рано или поздно она просто остановится. На самом деле все немного сложнее и в реальности ее притянет к Солнцу, но суть вы поняли.

Читайте также:  Отличается карбюраторный двигатель инжекторного

Можно сказать, что двигатель тоже рано или поздно остановится, если дать ему бесконечно много времени (все равно мы не проверим), но именно для этого и есть требование, что вечный двигатель должен производить больше энергии, чем потреблять. Даже если он будет вырабатывать на ничтожную долю процента больше энергии, чем заберет, он сам сможет обеспечить себя ”топливом”.

Немного юмора на тему вечного двигателя. Вот он!

Как сделать вечный двигатель

В мире было предпринято бесчисленное количество попыток сделать вечный двигатель. Конструкции предлагались самые разные, но объединяло их одно — все они не прошли проверку и не стали настоящим вечным двигателем. Хотя, на первый взгляд может показаться, что некоторые предложенные ниже конструкции будут работать, но это ошибка. Максимально близко к настоящей концепции вечного двигателя может приблизиться конструкция магнитного двигателя.

Вечный двигатель на магнитах

Конструкция вечного двигателя на магнитах может показаться простой и гениальной одновременно, но в ней есть одно ”но”. Прежде всего, магнит, даже самый хороший, не может давать энергию бесконечно и его сила магнетизма со временем будет уменьшаться. В итоге, двигатель просто перестанет работать. Хотя изначально идея действительно не плохая.

Идея вечного двигателя стала активизироваться в умах изобретателей с появленим неодимовых магнитов. Их пытались применить где угодно, а Майкл Брэди даже сделал двигатель, который запатентовал, хоть и не как вечный.

Такие вещи немного завораживают:

Суть в том, что магнит притягивает расположенные на вращающемся колесе ответные части и проводит конструкцию в движение. Конструкция проста и незамысловата, но даже если не учитывать потери от трения или просто исключить их, поместив систему в вакуум, двигатель все равно не будет вечным. Как раз из-за того, что магниты со временем теряют свои свойства.

Первый вечный двигатель

В любом деле кто-то должен быть первым. Пионер был и в ”вечнодвигателестроении” — им стал индийский математик Бхаскара. Упоминание вечного двигателя встречается в его рукописях, которые датируются XII веком.

В этих рукописях математик описывает механизм, который приводится в движение за счет перетекания ртути или другой жидкости внутри трубочек, которые надо разместить по окружности колеса. Конструкция выглядит перспективной из-за того, что жидкость на одной стороне колеса всегда будет находиться дальше от его центра.

Примерно так выглядел концепт первого вечного двигателя.

В реальности такая система не работает. Если сделать только две трубочки на разных сторонах колеса, то его действительно перевесит, но когда их много, разное положение жидкости в каждом все равно уравновесит систему и вращения не будет.

У Бхаскара были последователи, которые предлагали вместо жидкости использовать меняющие свое положение грузы. Кончено, все эти проекты были обречены на провал и постепенно первоначальная идея конструкции вечного двигателя сменялась другими.

Одна из вариаций на тему вечного двигателя Бхаскара.

Вечный двигатель Архимеда

На самом деле сам Архимед не изобретал никакого вечного двигателя. Он только сформулировал закон, согласно которому и работает следующая система. С этим законом знаком каждый, кто хоть раз бросал в воду мяч, поплавок или другой надувной предмет.

Так как то, что весит меньше, чем вода, выталкивается ей, это тоже можно использовать в качестве вечного двигателя и подобные концепты были. Например, можно попробовать поместить в систему шарики, которые будут всплывать из воды и раскручивать двигатель.

В этой конструкции не учтено только то, что невозможно сдержать воду в резервуаре, а если и возможно, то она будет давить на входящие поплавки с такой силой, которую не смогут компенсировать всплывающие.

Проблема в том, что в замкнутой системе ”отработанные” шарики надо снова погружать в воду, а на это нужно больше энергии, чем появляется при всплывании. Именно поэтому система почти моментально придет в равновесие и перестанет двигаться. Если только не заставить жидкость находиться с одной стороны, то удержать ее без потерь будет невозможно. Если ее постоянно подливать, то такой механизм уже не будет соответствовать основным требованиям, предъявляемым к вечному двигателю.

Вечный двигатель на противовесах

Еще одна система вечного двигателя подразумевает использование смещенной системы, в которой подвешенные на цепь грузы должны тянуть за собой всю конструкцию.

Вот так должна выглядеть эта система и крутиться против часовой стрелки, но она очень быстро придет в состояние равновесия.

Такую конструкцию предложил нидерландский математик Симон Стевин. В цепочку должны быть объединены 14 шаров. Эту цепочку надо перекинуть через треугольную призму. Согласно задумке, с одной стороны будет в два раза больше шаров и они будут тянуть всю систему. При этом шары, которые висят снизу, не участвуют в процессе, так как уравновешены и не должны мешать работе на призме.

Звучит здорово и логично, но та часть системы, где шаров в два раза больше, имеет более пологую плоскость и составляющая силы тяжести шаров с этой стороны будет меньше. В итоге, система опять придет в равновесие и быстро остановится.

Это тоже не вечный двигатель, а просто игрушка, так как кинетическая энергия будет теряться.

Почему невозможно создать вечный двигатель

В первую очередь, создание вечного двигателя невозможно из-за того, что он нарушает многие сформулированные и проверенные столетиями (и тысячелетиями) законы физики. Выработать в результате движения больше энергии, чем затрачено на приведение системы в движение, просто невозможно.

С другой стороны, многое раньше считалось невозможным. Вдруг человечество так до сих пор и не смогло найти фундаментальную ошибку ученых прошлого? Если вы хотели попробовать — попробуйте!

Источник

«ЮЖНЫЙ СТАРТ»

Беседы с академиком Российской АН Владимиром Федоровичем Уткиным, а также воспоминания, комментарии, отступления, справки, споры и попытки восстановления истины.

Беседа пятая.
Это не финал нашей документальной повести, а всего лишь попытка рассказать о том, что есть такое понятие

КОСМОС ДЛЯ ВСЕХ

Но нам выпало судьбой открывать реальный мир космоса, делать в нем первые шаги. Думаю, не найдется сейчас человека, который не признавал бы, что именно прорыв в космос заставил столь стремительно развиваться все области науки, техники и промышленности.

Об этом наша беседа с Владимиром Федоровичем Уткиным сегодня. Я спросил его:

— Почему в 1962 году Конструкторское бюро Янгеля начало заниматься космосом? Ведь, насколько я знаю, при создании КБ и завода о космосе даже и речи не заходило, он полностью отдавался Королеву.

ФАКТ ИЗ ИСТОРИИ. Еще в 1956 году, приехав однажды со встречи с Устиновым, Янгель сказал: «В следующем году Королев будет запускать искусственный спутник Земли с помощью «семерки». Мне предложено подстрахо вать эту

— А откуда взялось это название?

— Ковтуненко обсуждал его со многими людьми, но я думаю, что оно появилось в результате сотрудниче ства с академиком Борисом Николаевичем Петровым.

Я спросил Уткина:

— Но все-таки прежде всего вы думали об обороне?

— В то время он был заместителем командующего космическими силами?

— Да. Мы сдали машину возглавляемой им комиссии в комплексе.

— В это же время шел «Буран»?

— К сожалению, Валентин Петрович Глушко не собрал для него полезного груза. Я ему несколько раз говорил: обязательно нужно четко определить, что будем размещать на аппарате. Но надо отдать должное Глушко, он интересовался, можно ли на «Буране» вывозить на орбиту наши спутники. Я сказал ему: давайте все необходимые параметры, и следующее поколение спутников мы постараемся приспособить к вашим условиям, но для этого мне нужны четкие характеристики объектов, которые будут помещены на «Буран». Однако жизнь распорядилась так, что запустили две машины и все. Если из сегодняшнего дня посмотреть в прошлое, то станет ясно, что найти столько спутников тогда было трудно, да и запускать их нужно было регулярно, а не от случая к случаю.

— Однажды я посидел в тренажере «Бурана». Инструктор дал задание посадить его вручную. Несколько раз я пытался это сделать, но «разбивался». По-моему, идеально посадить такую махину на столь большой скорости мог только Игорь Волк.

— Согласен. И все-таки почему именно вы выиграли соревнование за его освоение?

— Некоторые руководители считают одним из своих достижений конверсию военного производства.

— Не преувеличиваете?

— Скажите, а для запусков спутников использовали старые носители?

— По-разному. Для запуска «Целины» выбирали носители, которые отстояли на боевом дежурстве. Их дорабатывали и затем уже запускали. Потом и новые носители делали. Все очень хорошо было продумано! И «Циклон» летает до сих пор.

Ракета-носитель «Циклон-2» имеет стартовый вес 170 тонн и представляет собой доработанную двухступенчатую межконтинентальную баллистическую ракету Р-36, принятую на вооружение в 1967 году. Она выводит в заданную точку баллистической траектории космические аппараты весом до 4 тонн. Ракетно-космичес кий комплекс «Циклон-2» базируется на космодроме Байконур.

. Всякое начало трудно. У истоков космической программы КБ «Южное» стоял Вячеслав Михайлович Ковтуненко, и, естественно, я поинтересовался мнением о нем у академика Уткина.

— Мы несколько раз встречались с Ковтуненко еще до его переезда в Москву. Он не скрывал, что хотел бы создать в Днепропетровске мощный космический центр, свое конструкторское бюро.

— Бывали случаи, когда и четыре машины пропадали в космосе.

— С Марсом нам не везет. И тогда, и сейчас. Будто заколдованная эта планета. С ней было немало осечек и не только у Ковтуненко.

— А Борис Николаевич Петров? Вы о нем упомянули.

— Как началось ваше сотрудничество?

— Борис Николаевич работал заместителем Трапезникова в Институте механики Академии наук и в это же время вместе с нами занимался так называемой теорией и системой опорожнения баков. Петров был научным руководителем темы. И сейчас эта работа продолжается в той же лаборатории, потому что сама проблема очень важна. Они были нашими «смежниками» по всем ракетам, в том числе и по «Зениту». А соратник и друг Петрова Фалунин со своим коллективом потом выделился в специальное конструктор ское бюро по изготовлению этой системы. Так что сотрудничество с Петровым у нас было многолетнее и весьма тесное. Это КБ делало рулевые машинки, датчики остатков топлива и другое оборудование. Заметьте, многие главные и генеральные конструкторы отказались делать некоторые приборы, к примеру те же рулевые машинки, а заказывали их «на стороне», а мы в Днепропетровске все делали сами: твердотопливные и жидкостные двигатели, твердотопливные и жидкостные ракеты, космические аппараты, тракторы, всевозможные системы преодоления потенциального противника и так далее. Это был своеобраз ный «непотопляемый корабль». А еще комплектовали железнодорожные ракетные поезда в Павлограде, там был наш филиал. Позже Петров возглавил космическое направление в Академии наук. Тут уж, как говорится, сам Бог велел нам тесно сотрудничать, ведь у нас были научные спутники.

— А ваши личные отношения?

— Прекрасные! Обаятельный человек, интеллигент, всегда корректен, внимателен. Мне кажется, он не мог сказать ни единого грубого слова. И как ученый очень талантлив.

— Безусловно. В международное сотрудничество его вклад огромен! О Петрове самые добрые и светлые воспоминания не у меня одного, а у всего нашего коллектива, и, конечно же, в КБ-6, которое возглавлял Федор Федорович Фалунин.

— Рассказывают, что в начале шестидесятых вы не только начали программу «Космос», но и занимались пилотируемым полетом на Луну, и даже к вам приезжал Королев и уговаривал заняться этим проектом?

— Когда начали делать ракету-носитель Н-1, загрузка КБ Королева стала очень большой.

— Это был какой-то фантастический проект?

— Невзирая на все сложности их отношений?

— Невзирая. Жизнь, как говорится, уже расставила все по своим местам, спорные вопросы и острые углы были сглажены, и они договорились. Нам была поручена разработка «Блока Е». Я считаю, что это самая ответственная часть лунной программы. Нужно было на «Блоке Е» сесть на Луну и взлететь с нее.

— Схема полета аналогична американской?

— Под прикрытием спутников серии «Космос»?

— Вся работа оказалась напрасной?

НЕБОЛЬШОЕ ОТСТУПЛЕНИЕ

И вот стоят в кремлевской роще

Три символа российской мощи

И наших нераскрытых сил:

Царь-колокол, что не звонил,

И Н-1, что не летала.
В. Назаренко, специалист поракетным двигателям.

— Поистине все возвращается «на круги своя». Я имею в виду ту дискуссию и ту борьбу, что шла в начале пятидесятых между Королевым и Янгелем.

— В 1952 году мы начинали с машин на кислороде, потом резко ушли в сторону, но все-таки специалисты еще остались, да и мы кое-что понимали в этом деле. Вот так родилась идея делать «Зенит».

— Вы сразу делали его космическим?

— Да! Это была только космическая машина. И мы сразу же изменили подходы к ее созданию. Договорились с Валентином Петровичем Глушко, что надо идти от простого к сложному, от носителя среднего класса, которым был «Зенит», к «Энергии» и использовать в ней в качестве ускорителя первую ступень «Зенита». К сожалению, позже Глушко и даже один из моих заместителей начали говорить, что сначала появилась «Энергия», а затем уже я представил «Зенит». Может быть, документов о «первородстве» и не сохранилось, но я прекрасно помню, как убеждал Валентина Петровича: пустим десять-пятнадцать «Зенитов», а там и «Энергия» подойдет. А первая ступень для нее будет уже отработана.

— А можно суммировать преимущества «Зенита» перед другими машинами?

— Я люблю рассказывать о «Зените», потому что горжусь этой машиной. Если коротко, то она экологически чистая, унифицирована с «Энергией», с автоматическим стартом, плюс полная автоматизация заправки и предстартовой подготовки. Эти системы устанавливаются в тот момент, когда машина стыкуется с наземной платой.

— Не только интересно, но и правильно! А сколько может поднимать «Зенит»?

— До четырнадцати тонн.

— У нее только две ступени?

СВИДЕТЕЛЬСТВО ПРОЕКТАНТА ЮРИЯ МОШНЕНКО:

«Ракетный комплекс «Зенит» разработан под руководством Генерального конструктора академика Уткина Владимира Федоровича. Судьба ракеты-носителя складывалась удачно. Первый ее образец умчался в небо с космодрома «Байконур» 13 апреля 1985 года. «

Далее Ю. Мошненко приводит тринадцать фактов из жизни этого комплекса. Я процитирую некоторые из них, те, что показались мне наиболее интересными и важными.

Первые ступени «Зенита», доработанные в так называемый «Блок А», использовались в качестве ускорителей ракеты «Энергия-Буран», четыре таких блока давали 80% тяги «Энергии».

Американская ракета-носитель «Титан», выводящая на околоземную орбиту, как и «Зенит», около 15 тонн груза, имеет вдвое большую стартовую массу и стоимость.

— Как вы относитесь к идее «уйти» с космическими стартами в океан?

— Значит, коммерция и конкуренция?

— Вам, Владимир Федорович, хотелось бы что-то добавить к этой информации?

— Давайте вернемся к этому вопросу летом будущего года и поговорим где-нибудь в районе экватора. Договорились?

Естественно, в беседе с Уткиным я не мог не спросить его о случившемся.

— И сколько это?

— Минимум одна ракета в месяц. Если начинать с заготовки металла, узлов, то и полгода требуется. В общем, процесс должен быть непрерывным. А по поводу аварии «Зенита-2» сейчас работает комиссия. Есть подозрение, что что-то произошло с двигателем, но пока однозначно не могу сказать. Меня очень беспокоит, что «Зенит» не изготовляется на потоке, на конвейере. Нет у него пока широкой дороги, а ведь это машина ХХI века!

— Нужно определить стратегию ее применения?

— И найти его не могут?

— Что же будет дальше?

— И морской старт будет, и, убежден, у «Зенита» будет хорошая судьба. Я знаю ситуацию в ракетострое нии в мире, знаком с наметками на использование космоса в ХХI веке. «Зенит» просто необходим, чтобы эти прогнозы сделать реальностью.

ФАКТ И КОММЕНТАРИЙ. Оказывается, на полке могут лежать и пылиться не только рукописи, но и спутники. Еще в бытность Генеральным конструктором КБ «Южное» Уткин поехал к министру финансов Павлову и попросил у него в долг 50 миллионов рублей, чтобы завершить работу над спутником «Океан». Это довольно большой космический аппарат, предназначенный для изучения и наблюдения океанов планеты. Такого рода спутников еще не было.

— Тогда Павлов дал мне деньги, и работы над спутником были завершены.

— Где же он теперь?

— Все там же, на полке. Нет денег, чтобы его запустить. И в этом году очередь до него не дойдет, потому что средств отпущено очень мало, и никто не уверен, что они вообще придут.

— Все-таки «Южмаш» может не только троллейбусы делать?

— Да, космическая тематика там осталась, ракеты «Циклон» и «Зенит» выпускать могут. Так что перспективы хорошие.

— Правда ли, что космосом выгодно заниматься? Или это все-таки, как говорят многие, «удовлетворение любопытства за государственный счет»?

— Обустройство и исследование космоса год от года будут расширяться, это процесс естественный для развития цивилизации.

— Несколько примеров, пожалуйста.

— Нет более простого способа обеспечивать связь как через космос. Я уже упоминал о том, что мы сделали и запустили спутник, на котором был установлен боковой локатор. А буквально через семь дней все газеты писали о приближающейся катастрофе в проливе Лонга, где у острова Врангеля застряли корабли. Не будь нашего спутника (он показал, где и как нужно их выводить), корабли бы погибли. А как держал связь с Владивостоком корабль «Сомов»? Через спутник «Океан-1». Или телевидение? Если мы прекратим запуски спутников в космос, то погасим экраны телевизоров. Передачи из Москвы можно будет смотреть лишь в Подмосковье и соседних областях, ведь везде ретрансляторов не построишь. Людям это понравится? А тут на орбите «самый высокий ретранслятор». Я уже не говорю о ракетных системах сдерживания противника. Или будем хоронить в Земле ядерные отходы? Убежден, будем отправлять их куда-нибудь на Солнце. А о Тунгусском метеорите слышали?

— По-моему, нет людей, которых он не интересовал бы!

— А разве такое возможно?

— Вы имеете в виду, что «человечество не останется вечно на Земле. «?

— Эти слова справедливы и мудры. «Мы в пещеры не пойдем», да и много нас уже стало, а потому все в пещерах не поместятся.

— А если бы вам пришлось начать все заново? Принесло бы это моральное удовлетворение?

— Мы совершили бы крупную ошибку, если бы не занимались этими проблемами. И дело не только в материальных выгодах, но и в сути развития общества. Был выбран магистральный путь, и мы шли по нему одними из первых. Разве это не приносит удовлетворения?!

Источник

«Наука и жизнь» № 3, 2021

анонс номера

«Наука и жизнь» № 3, 2021

Вирусы: свои среди чужих, чужие среди своих (беседу ведёт Н. Лескова)
П. Чумаков, член-корр. РАН

ВЕСТИ ИЗ ИНСТИТУТОВ, ЛАБОРАТОРИЙ И ЭКСПЕДИЦИЙ
Первичный фосфор для первичной жизни
Электрическое поле помогает алмазам расти
А. Понятов, канд. физ.-мат. наук
Ювелиры-шахматисты XIII века
Е. Антонов

Как работает вакцина
К. Стасевич

Хотите стать физиком, математиком, химиком?

Время Большой Медведицы. Весеннее небо
А. Понятов, канд. физ.-мат. наук

Бюро иностранной научно-технической информации

Астероид Лесков 40
И. Пырков, докт. филол. наук

Большие амурские наводнения
А. Махинов, докт. геогр. наук

О чём пишут научно-популярные журналы мира

Наносчётчик для «наноовец»
К. Г. Родригес, Л. Юлдашева

Наука и жизнь сто лет назад

Часовые тайги
И. Змитрович, докт. биол. наук, С. Арефьев, докт. биол. наук, Н. Калиновская

«УМА ПАЛАТА»
Познавательно-развивающий раздел для школьников
Холод космоса не так уж далёк, как кажется
М. Абаев, канд. хим. наук
Искусство соглашаться.
Е. Щукина
В шаге от неизвестности
Ю. Емельянов, канд. физ.-мат. наук

Весна — зацветают морозники!
А. Рубинина

На тропе древних (фантастическая повесть)
Е. Первушина

Сельдерей заслуживает хлопот!
В. Дадыкин

Маленькие хитрости

Ответы на кроссворд

Кроссворд с фрагментами

Из истории фамилий
В. Максимов, канд. филол. наук

В видоискателе — животный мир. Где искать диких животных? 12+
О. Першин

Источник

Жизнь двигателя после смерти ракеты

Жизнь двигателя после смерти ракеты

Спейс шаттлы прекратили полеты почти ровно семь лет назад, но их двигателям SSME (RS-25) оказалась уготована более долгая жизнь. Сейчас они активно испытываются под разными названиями для двух проектов, причем в одном случае они модифицируются под однократное использование, а в другом, наоборот, проверяют, что двигатели сохранили возможность отправиться в космос снова с минимальными задержками.


Испытания двигателя на базе SSME, фото NASA

Перезапуск производства для SLS

От шаттлов осталось шестнадцать двигателей SSME. Этого хватит на четыре полета сверхтяжелой ракеты SLS (на второй ступени стоят четыре двигателя), но для последующих пусков потребуются новые. Поэтому еще в 2015 году Aerojet Rocketdyne получила контракт на возобновление производства. Параллельно тогда же начались проверки адаптированных под новую ракету двигателей со склада. А с конца 2017 года приступили к испытаниям модификаций для новых двигателей.

Главным отличием новых RS-25 будет увеличенная тяга. В конце эксплуатации шаттлов двигатели работали на 104,5% исходной тяги. Для адаптированных двигателей со склада ее уже увеличили до 109%, и если в 2017 году планировали добавить 2 процента, то уже в феврале этого года тестовый двигатель «разогнали» до 113% исходной тяги. Кроме этого, на RS-25 поэтапно внедряются новые детали.

На этапе 1А на двигатель установили новый демпфер пого-колебаний, произведенный методом селективного лазерного спекания на 3D-принтере. Печатать деталь сложной формы будет дешевле, чем изготавливать использовавшимися ранее методами.

Этап 1B, как ожидается, начнется 4 августа, и на нем проверят 9 новых деталей, среди которых новая камера сгорания, изготовленная методом горячего изостатического прессования, и более дешевая теплоизоляция насоса топлива высокого давления.


Новая изоляция — серебряное покрытие слева. Фото NASA

Главным изменением этапа 2 будут простые гофрированные трубопроводы вместо сложных гибких соединений. В отличие от шаттла, двигатели SLS будут меньше поворачиваться в полете, что позволяет упростить конструкцию.

А на этапе 3 сопло, которое раньше изготавливалось из 37 деталей, заменят на новое, собирающееся из всего четырех.


Изготовление нового сопла, фото NASA

В итоге кроме увеличения тяги двигатель должен заметно подешеветь, потому что новые компоненты, как ожидается, будут стоить на 20-60% меньше.


Экономия на новых деталях, иллюстрация NASA

По условиям заключенного контракта шесть новых двигателей должны быть переданы NASA в июле 2024 года.

Подтверждение многоразовости для XSP

Экспериментальный космоплан XSP (или еще недавно XS-1) — это проект DARPA по созданию ракеты-носителя с крылатой многоразовой первой ступенью.

В качестве двигателя крылатой ступени выбрали один SSME. Под названием AR-22 двигатель, в отличие от первого проекта, использует уже хранящиеся на складе детали и дефорсирован с 104,5% до исходных 100% тяги, которая была в 70-х. Зато здесь двигатель успешно показал пригодность к повторному пуску через сутки — в начале июля завершилась серия испытаний с 10 пусками двигателя за 10 дней. Именно быстрота повторного использования является одной из «киллер-фич» проекта.

Конечно же, такая скорость межполетной подготовки породила новые проблемы, например, пришлось искать способы быстро просушить двигатель. Но с ними справились, и среднее время межполетной подготовки составило 18,5 часов, а лучшее — 17 часов.

Заключение

Использование удачных конструкций прошлых проектов — логичная вещь, но сейчас, с модой на многоразовость, забавно смотреть, как из многоразового двигателя шаттла делают одноразовый для SLS. И если задуматься, тут скрыта любопытная история. Те компоненты шаттла, которые могли служить десятки полетов, устарели. В начале нулевых NASA пришлось искать по чуть ли не помойкам процессоры 8086. А двигатели постоянно перебирались и заменялись — за 135 полетов шаттлов на них отработали 46 SSME (еще один был изготовлен, но не летал ни разу). В среднем один двигатель служил 8,8 полетов, и при производстве новых двигателей в них закладывали модификации, улучшающие их характеристики.


История обновлений двигателя, схема NASA

В результате двигатель пережил свою ракету, и сейчас его может ждать еще долгая жизнь в других проектах.

Источник

Эволюция двигателя внутреннего сгорания

Как развивался ДВС: основные даты

Эволюция двигателя внутреннего сгорания

Благодаря этому сегодня все современные автомобили стали мощнее и экономичнее. Некоторые обычные автомобили сегодня имеют такую мощность, которая еще недавно была только в мощных дорогих суперкарах. Но без огромных прорывов в конструкции ДВС мы бы сегодня до сих пор владели маломощными прожорливыми автомобилями, на которых не уедешь далеко от заправки. К счастью, время от времени подобные прорывные технологии уже не раз открывали новый этап в развитии двигателей внутреннего сгорания. Мы решили вспомнить самые важные даты в эволюции развития ДВС. Вот они.

1955 год: впрыск топлива

Эволюция двигателя внутреннего сгорания

До появления системы впрыска процесс попадания топлива в камеру сгорания двигателя был неточным и плохо регулируемым, поскольку топливно-воздушная смесь подавалась с помощью карбюратора, который постоянно нуждался в очистке и периодической сложной механической регулировке. К сожалению, на эффективность работы карбюраторов влияли погодные условия, температура, давление воздуха в атмосфере и даже на какой высоте над уровнем моря находится автомобиль. С появлением же электронного впрыска топлива (инжектора) процесс подачи топлива стал более контролируемым. Также с появлением инжектора владельцы автомобилей избавились от необходимости вручную контролировать процесс прогрева двигателя, регулируя дроссельную заслонку с помощью «подсоса». Для тех, кто не знает, что такое подсос:

Подсос – это ручка управления пусковым устройством карбюратора, с помощью которой на карбюраторных машинах было необходимо регулировать обогащение топлива кислородом. Так, если вы запускаете холодный двигатель, то на карбюраторных машинах необходимо открыть «подсос», обогатив топливо кислородом больше, чем необходимо на прогретом моторе. По мере прогревания двигателя нужно постепенно закрывать ручку регулировки пускового устройства карбюратора, возвращая обогащение топлива кислородом к нормальным значениям.

Сегодня подобная технология, естественно, выглядит допотопно. Но еще совсем недавно большинство автомобилей в мире оснащались карбюраторными системами подачи топлива. И это несмотря на то, что технология впрыска топлива с помощью инжектора пришла в мир в 1955 году, когда инжектор впервые был применен на автомобиле (ранее эта система подачи топлива использовалась в самолетах).

Эволюция двигателя внутреннего сгорания

В этом году было проведено испытание инжектора на спорткаре Mercedes-Benz 300SLR, который смог проехать, не сломавшись, почти 1600 км. Это расстояние автомобиль преодолел за 10 часов 7 минут и 48 секунд. Испытание проходило в рамках очередной автогонки «Тысяча миль». Эта машина установила мировой рекорд.

Кстати, Mercedes-Benz 300SLR стал не только самым первым серийным автомобилем с инжекторным впрыском топлива, разработанным компанией Bosch, но и самым быстрым автомобилем в мире в те годы.

Два года спустя компания Chevrolet представила спорткар Corvette с впрыском топлива (система Rochester Ramjet). В итоге этот автомобиль стал быстрее первооткрывателя Mercedes-Benz 300SLR.

Но, несмотря на успех Chevrolet Corvette с уникальной системой впрыска топлива Rochester Ramjet, именно электронные инжекторные системы Bosch (с электронным управлением) начали свое наступление по миру. В результате за короткое время впрыск топлива, разработанный компанией Bosch, начал появляться на многих европейских автомобилях. В 1980-е годы электронные системы впрыска топлива (инжектор) охватили весь мир.

1962 год: турбонаддув

Эволюция двигателя внутреннего сгорания

Турбокомпрессор является одним из самых драгоценных камней в двигателях внутреннего сгорания. Дело в том, что турбина, которая подает больше воздуха в цилиндры двигателя, когда-то позволяла

12-цилиндровым истребителям во время Второй мировой войны взлетать выше, лететь быстрее, дальше и меньше расходовать дорогое топливо.

В итоге, как и многие технологии, система турбин из авиатехники пришла в автопромышленность. Так, в 1962 году в мире были представлены первые серийные автомобили с турбокомпрессором. Ими стали BMW 2002, или Saab 99.

Эволюция двигателя внутреннего сгорания

После чего компания General Motors попыталась развить дальше эту технологию турбирования двигателей внутреннего сгорания на легковых автомобилях. Так, на автомобиле Oldsmobile Jetfire появилась технология «Turbo Rocket Fluid», которая помимо турбины использовала резервуар с газом и дистиллированную воду для увеличения мощности двигателя. Это была настоящая фантастика. Но затем компания GM отказалась от этой сложной и дорогой, а также опасной технологии. Все дело в том, что уже к концу 1970-х годов такие компании, как MW, Saab и Porsche, заняв первые места во многих мировых автогонках, доказали ценность турбин в автоспорте. Сегодня же турбины пришли на обычные автомобили и в ближайшем будущем отправят обычные атмосферные моторы на пенсию.

1964 год: роторный двигатель

Эволюция двигателя внутреннего сгорания

Единственным двигателем, который по-настоящему смог сломать форму обычного двигателя внутреннего сгорания, стал роторный чудо-мотор инженера Феликса Ванкеля. Форма его ДВС ничего общего не имела с привычным нам двигателем. Роторный мотор представляет собой треугольник внутри овала, вращающийся с дьявольской силой. По своей конструкции роторный двигатель легче, менее сложный и более крутой, чем обычный двигатель внутреннего сгорания с поршнями и клапанами.

Первыми роторные двигатели на серийных авто начали использовать компания Mazda и ныне уже не существующий немецкий автопроизводитель NSU.

Самым же первым серийным автомобилем с роторным двигателем Ванкеля стал NSU Spider, который начал выпускаться в 1964 году.

Затем компания Mazda наладила производство своих автомобилей, оснащенных роторным мотором. Но в 2012 году она отказалась от использования роторных двигателей. Последней с роторным мотором стала модель RX-8.

Но недавно, в 2015 году, Mazda на Токийском автосалоне представила концепт-кар RX-Vision-2016, который использует роторный мотор. В итоге в мире начали появляться слухи, что японцы планируют в ближайшие годы возродить роторные автомобили. Предполагается, что в настоящий момент специализированная группа инженеров Mazda где-то в Хиросиме сидит за закрытыми дверями и создает новое поколение роторных моторов, которые должны стать основными двигателями во всех будущих новых моделях Mazda, открыв новую эру возрождения компании.

1981 год: технология дезактивации цилиндров двигателя

Эволюция двигателя внутреннего сгорания

Идея проста. Чем меньше цилиндров работает в двигателе, тем меньше расход топлива. Естественно, что двигатель V8 намного прожорливее, чем четырехцилиндровый. Также известно, что при эксплуатации автомобиля большую часть времени люди используют машину в городе. Логично, что если автомобиль оснащен 8- или 6-цилиндровыми моторами, то при поездках в городе все цилиндры в двигателе в принципе не нужны. Но как можно просто превратить 8-цилиндровый мотор в четырехцилиндровый, когда вам не требуется задействовать для мощности все цилиндры? На этот вопрос в 1981 году решила ответить компания Cadillac, которая представила двигатель с системой дезактивации цилиндров 8-6-4. Этот мотор использовал электромагнитные управляемые соленоиды для закрытия клапанов на двух или четырех цилиндрах двигателя.

Эта технология должна была повысить эффективность двигателя, например, при движении по шоссе. Но последующая ненадежность и неуклюжесть этого мотора с системой дезактивации цилиндров напугала всех автопроизводителей, которые в течение 20 лет боялись использовать эту систему в своих моторах.

Но теперь эта система снова начинает завоевывать автомир. Сегодня уже несколько автопроизводителей используют эту систему на своих серийных автомобилях. Причем технология зарекомендовала себя очень и очень хорошо. Самое интересное, что эта система продолжает развиваться. Например, уже скоро эта технология может появиться на четырехцилиндровых и даже на трехцилиндровых моторах. Это фантастика!

2012 год: двигатель с высокой степенью сжатия – воспламенение бензина от сжатия

Эволюция двигателя внутреннего сгорания

Наука не стоит на месте. Если бы наука не развивалась, то сегодня мы бы до сих пор жили в Средневековье и верили в колдунов, гадалок и что земля плоская (хотя сегодня все равно есть немало людей, которые верят в подобную чушь).

Не стоит на месте наука и в автопромышленности. Так, в 2012 году в мире появилась очередная прорывная технология, которая, возможно, совсем скоро перевернет весь автомир.

Речь идет о двигателях с высокой степенью сжатия.

Мы знаем, что чем меньше сжимать воздух и топливо внутри двигателя внутреннего сгорания, тем меньше мы получим энергии в тот момент, когда топливная смесь воспламеняется (взрывается). Поэтому автопроизводители всегда старались делать двигатели с немаленькой степенью сжатия.

Но есть проблема: чем выше степень сжатия, тем больше риска самовоспламенения топливной смеси.

Поэтому, как правило, ДВС имеют определенные рамки в степени сжатия, которая на протяжении всей истории автопромышленности была неизменяемой. Да, каждый двигатель имеет свою степень сжатия. Но она не меняется.

В 1970-х годах в мире был распространен неэтилированный бензин, который при сгорании дает огромное количество смога. Чтобы как-то справиться с ужасной экологичностью, автопроизводители начали использовать V8 моторы с низким коэффициентом сжатия. Это позволило снизить риск самовоспламенения топлива низкого качества в двигателях, а также повысить их надежность. Дело в том, что при самовоспламенении топлива двигатель может получить непоправимый урон.

Но затем при массовом появлении электронного впрыска автопроизводители с помощью компьютера стали применять различные настройки, автоматически регулирующие качество топливной смеси, что позволило существенно улучшить экономичность двигателей и снизить уровень вредных веществ в выхлопе. Но главное, что удалось сделать с помощью компьютерных настроек и регулировки топливной смеси, – это снизить до минимума риск самовоспламенения топлива. В итоге со временем стало невыгодно использовать большие мощные моторы с низкой степенью сжатия. Так автопромышленность ввела новую моду – уменьшение количества цилиндров. Чтобы сохранить мощность в моторах, автопроизводители стали использовать турбины. Но главное – благодаря электронике, которая управляет качеством топливной смеси, автопроизводители снова могут создавать моторы с большой степенью сжатия, не опасаясь самовоспламенения топлива.

Эволюция двигателя внутреннего сгорания

Но в 2012 году компания Mazda удивила весь мир, представив фантастический мотор SKYACTIV-G, который имеет невероятно высокий коэффициент сжатия для серийного двигателя. Степень сжатия этого мотора составляет 14:1. Это позволяет мотору извлекать энергию почти из каждой капли бензина без образования смога.

Следующим шагом для Mazda стал новый мотор SKYACTIV-X, который использует контролируемое зажигание (система SPCCI). Благодаря этой системе появилась возможность воспламенять бензин практически за счет одного только сжатия. То есть как в дизельных моторах. Также в двигателях SKYACTIV-X есть возможность воспламенять топливо обычным образом. Причем электроника автоматически выбирает, как выгоднее воспламенять бензин в камере сгорания. Все зависит от потребностей водителя и условий движения.

Например, если вам нужна сила (крутящий момент), то двигатель SKYACTIV-X будет воспламенять топливо от силы сжатия (почти как дизель). Если вам нужна мощность, то мотор с высокой степенью сжатия будет воспламенять топливо обычным образом. Причем реально для придания мощности будет использована последняя капля бензина.

Даже спустя столетие и даже с появлением альтернативных видов топлива, а также с появлением электрокаров двигатели внутреннего сгорания остаются главными силовыми агрегатами в автопромышленности. И несмотря на то что многие эксперты считают, что ДВС изжил себя и в скором времени должен исчезнуть из автомира, нам кажется, что двигатель внутреннего сгорания еще не развился до конца. Также мы считаем, что мир в ближайшие 100 лет все равно не будет готов полностью отказаться от ДВС, работающих на бензине.

И кто его знает, что нам подготовят автомобильные компании в ближайшем будущем. Ведь их инженеры не зря получают бутерброды с черной икрой. Вполне возможно, что уже скоро очередной автопроизводитель удивит нас какой-нибудь новой технологией в ДВС.

Так что рано сбрасывать со счетов традиционные моторы. Может быть, электрокары – это временное явление? Скорее всего, это более вероятно.

Источник