Недостатки двигателя прямого впрыска

Несовершенство непосредственности: надежность и проблемы моторов с прямым впрыском

«В новый век – с новой системой питания!». Похоже, с таким девизом европейские производители стали внедрять технологию. А что им оставалось? Требования по снижению расхода топлива заставляли делать моторы сложнее, к тому же непосредственный впрыск (особенно в сочетании с наддувом) позволял увеличить мощность. И при этом оставлял мотор вполне экономичным на малой нагрузке. Начал входить в моду и даунсайз – постепенно для машины С-класса стало вполне нормальным иметь мотор объемом в литр, а мощные авто начинаются с объема в 1,4. Даже седаны D+ и Е классов не брезгуют моторами 1,4 и 1,6 с турбонаддувом.

Снова те же грабли, но в XXI веке

Собственно о минусах подобной системы питания было известно с самого начала. Сложность и высокая стоимость сюрпризом не были – опыт внедрения непосредственного впрыска накопился изрядный. Надежность сложных систем честно постарались увеличить. Правда, цену особенно опустить не пытались.

Как известно, для подачи топлива непосредственно в цилиндры нужен насос высокого давления. Вообще-то и в системах «обычного» распределенного впрыска в системе питания давление немаленькое, но у прямого впрыска оно примерно в 10 раз больше.

Современные мембранные ТНВД не так зависят от смазки, как поршневые, но, тем не менее, нуждаются в ней. Да и в целом насос высокого давления – штука довольно хрупкая, любые загрязнения выведут его из строя. Улучшить ситуацию смогли введением стандарта на смазывающие присадки в топливе. Конечно, 15% масла, как в двухтактные моторы, добавлять не стали, но топливо Евро-4 и выше обязательно содержит небольшое количество специальных смазок. Не в последнюю очередь – именно для ТНВД на бензиновых машинах. Учитывая, что официальный запрет на продажу топлива Евро-3 вступил в России в силу лишь 1 января 2015 года, неудивительно, что «непосредственные» машины у нас жили так недолго и несчастливо.

1432677484_112147939

С форсунками ситуация аналогичная, они дороже и менее надежны, чем на системах распределенного впрыска. Требования к их работе тоже намного выше. Небольшое изменение факела распыла, даже без изменения общего расхода подачи, ведет к серьезным нарушением работы мотора. В результате для сохранения работоспособности резко растут требования по чистоте топлива и рабочей температуре.

Пьезофорсунки еще и имеют ограниченное количество циклов срабатывания, чувствительны к перегреву, а также обладают склонностью при выходе из строя «лить» бензин, что может вызвать гидроудар при запуске. Особенно это характерно для очень распространенных «высокоточных» пьезофорсунок Bosch, которые имеют ограниченный ресурс, а компания на протяжении последних десяти лет не может создать действительно хорошо работающий вариант.

Склонность к закоксовке впускных клапанов и худшие условия их работы проявились на моторах Мицубиси довольно быстро. Обычно форсунки подают бензин на впускной клапан и охлаждают его. И заодно смывают с него отложения. У непосредственного мотора такой возможности нет, клапан греется сильнее, больше нагревает воздух, а масло из системы вентиляции картера и из сальника клапана постепенно образует «шубу», которая затрудняет газообмен и приводит к зависанию клапанов и его перегреву. Особенно тяжело приходится моторам с повышенным расходом масла, а в самой критической группе риска – моторы, которые часто работают с малой нагрузкой, то есть в пробках.

Плохие пусковые качества из-за неудовлетворительного испарения топлива при пуске тоже проявились давно. Оказалось, что оптимизация формы факела впрыска на холодном и горячем моторе должна производиться более тщательно. Любое попадание топлива на стенки цилиндра приводит к резкому увеличению количества несгоревшего топлива и попаданию его в масло. А при запуске при отрицательных температурах большое значение приобретает качество распыла бензина: оно должно оказаться намного выше, чем при обычной работе, и давление топлива на пуске должно быть очень высоким. Поначалу этого не учли.

Повышенное количество твердых частиц в выхлопе проявилось позже, когда непосредственный впрыск на европейских машинах уже стал мэйнстримом. Более точные исследования показали, что эта особенность смесеобразования роднит такой бензиновый мотор с дизелем. Действительно, в процессе работы образуются частички сажи, которые необходимо тоже как-то задерживать. Например, вводя сажевый фильтр, как на дизельных моторах. Компания Mercedes уже анонсировала подобную опцию для своих машин.

Попадание топлива в масло из-за неисправностей топливного насоса высокого давления – в общем-то чисто конструктивный недостаток насосов Bosch, но в силу их широкого распространения и общности конструкций насосов свойственен почти всем моторам с непосредственным впрыском. Бензин в масле не так уж и страшен, но в больших количествах ведет к снижению вязкости масла до критической, что приводит к повреждениям моторов. И, к тому же, дает повод многим «экспертам» говорить о том, что топливо является причиной «масляной чумы».

Что же делать?

Почти у всех проблем есть пути решения. Например, двойной впрыск, когда топливо подается и в цилиндры, и во впускной трубопровод – это справляется сразу со сложностью с закоксовкой клапанов, экологичностью и плохим запуском в холода. Такая схема применялась на некоторых двигателях Volkswagen EA888, но продавались они исключительно в США и были заточены под жесткие экологические нормы Калифорнии. Но в конце 2014-го комбинированный впрыск появился и у нас – на моторе 6AR-FE (2 литра, 150 л. с.) Toyota Camry последнего поколения. Пока сложно судить о надежности, ибо пробеги машин пока небольшие в основной массе, однако предпосылки хорошие.

Под капотом 2015–н.в. Toyota Camry XLE

Под капотом 2015–н.в. Toyota Camry XLE

С поршневыми кольцами и топливными насосами приходится разбираться чисто конструктивными методами, экспериментируя с формой – часто «дизайн» поршневой группы производители дорабатывают уже после того, как машина вышла на рынок и поразила всех угаром масла. Так, скажем, делала Toyota в 2005 году, доводя до ума моторы серии ZZ (еще без непосредственно впрыска), а позже – Volkswagen с уже упомянутыми выше EA888. Насосы высокого давления тоже стараются сделать надежнее – эта задача технически выполнима.

Но все непросто: система очень сложная и дорогая – накладным для производителей выходит не только себестоимость конечной продукции, но и исследования с экспериментами. А маркетологи не дают возможности по 10 лет заниматься испытаниями, требуют все более новых моторов с еще более привлекательными характеристиками.

Рискнуть в сегодняшнем автобизнесе репутацией производителя ненадежных машин считается делом благородным. Если что, всегда выручит отзывная кампания. Куда хуже – показаться производителем консервативным или, не дай бог, незацикленным на идее спасения планеты от выхлопных газов. Вот это, как мы видимо по примеру Volkswagen и Mitsubishi – действительно страшно. Тут можно и самостоятельность компании потерять, и топ-менеджмента лишиться.

Источник

Преимущества и недостатки двигателей с непосредственным впрыском топлива

В чём отличие схемы с непосредственным впрыском

Бензиновые двигатели внутреннего сгорания с непосредственным впрыском начали массово поступать на отечественный рынок в начале 2000-х годов и к настоящему моменту стали непременным атрибутом любого более-менее современного автомобиля среднего или высшего ценового сегмента. Иными словами, они давно являются данностью и останутся таковой до момента перехода человечества на принципиально иные средства передвижения, коими сейчас большинству экспертов видятся электрокары.

Читайте также:  Опель кадет снять двигатель

Основным отличием от традиционной системы распределённого впрыска схемы с непосредственным впрыском является то, что бензин в ней подаётся не во впускной коллектор, а прямиком в цилиндры. Таким образом, в камеры сгорания поступает не готовая топливовоздушная смесь, а «живое» топливо, при этом смесеобразование производится в самом моторе.

Преимущества и недостатки двигателей с непосредственным впрыском топлива 1

Зачем это нужно

Вопросом создания систем непосредственного впрыска инженеры озаботились ещё во второй половине XIX века, однако довести до массового серийного производства смогли относительно недавно. Первыми на рынок поступили моторы семейства Mitsubishi GDI, а следом подтянулись и все другие всемирно известные бренды — Volkswagen, GM, Toyota, Mercedes, BMW, Ford, Peugeot/Citroen, Renault, Mazda и даже корейский Hyundai.

Хитрость в том, что схема с непосредственным распределённым впрыском позволяет чрезвычайно тонко и точно управлять процессом смесеобразования и заставлять бензиновый двигатель работать на невероятно бедной топливовоздушной смеси. Если обычные моторы, как правило, функционируют при соотношении бензина к воздуху в пропорции 1:14, то моторы с непосредственным впрыском в некоторых режимах выходят на 1:20 и даже 1:40. Нетрудно догадаться, что это позволяет им сжигать гораздо меньше топлива. При этом настройка процессов смесеобразования в реальном времени и применение сразу нескольких режимов работы повышает мощностные и динамические показатели и улучшает экологичность силового агрегата.

Производители таких движков приводят весьма красноречивые данные: расход топлива снижается в среднем на 20-25%, а тяга и мощность повышаются на 10-15%. И всё это при небольшом литраже, применении систем рециркуляции и дожигания выхлопа, соответствии самым строгим экологическим нормам и возможности использования на ДВС многоступенчатого наддува. Словом, не моторы — сказка!

Преимущества и недостатки двигателей с непосредственным впрыском топлива 2

Технические хитрости

И всё бы ничего, да применение схем непосредственного впрыска тянет за собой невероятно высокие требования не только к конструкции силового агрегата, но также к топливному насосу и качеству горючего, а также смазочным материалам, форсункам и электрике, большинству других жизненно важных узлов и агрегатов автомобиля.

Добиться образования правильной смеси при непосредственном впрыске чрезвычайно сложно. Для этого «мозги» машины снабжаются сразу несколькими программами управления с разным циклом работы и ворохом высокоточных датчиков. А за распыл топлива отвечают специальные вихревые форсунки, работающие при сверхвысоком давлении, для создания которого, в свою очередь, автомобиль оснащается высокопроизводительными топливными насосами, аналогичными тем, что используются в дизельных схемах (если обычные насосы развивают порядка 3-4 атм, то эти обеспечивают 50-130). Разумеется, компоненты таких систем должны быть невероятно технологичными и качественными, рассчитанными на длительный срок службы. Именно соблюдение этих условий позволяет более эффективно распылять топливо, лучше перемешивать его с воздухом и грамотнее распоряжается готовой смесью на разных режимах работы двигателя.

Будучи ненагруженным (к примеру, в режиме холостого хода), двигатель с непосредственным впрыском функционирует в режиме послойного смесеобразования — смесь максимально обедняется, но остаётся достаточно качественной и пригодной для работы. В этом режиме дроссельная заслонка открыта широко, а впускные заслонки находятся в закрытом состоянии. Горючее впрыскивается ближе к концу такта сжатия в область свечи зажигания, где завихряется и легко воспламеняется. Гомогенное смесеобразование позволяет получить мощностную смесь, необходимую при равномерных нагрузках на двигатель и на переходных режимах. При максимальных нагрузках открыты как дроссельная заслонка, так и впускные каналы, а горючее впрыскивается ещё на такте впуска. Одновременно, по возможности, дожигаются и выхлопные газы, что повышает экологические показатели без ущерба для мотора.

Всё это требует доработки геометрии камеры сгорания, повышения степени сжатия до 1:12-14, применения более сложного и дорогого катализатора, высокопроизводительных форсунок с мощными соленоидами, а также высокопроизводительного мультирежимного топливного насоса.

Преимущества и недостатки двигателей с непосредственным впрыском топлива 3

Плюсы и минусы

Главным минусом систем непосредственного впрыска является общее снижение надёжности: даже при незначительных сбоях и поломках какого-либо компонента такой движок начинает «капризничать» — глохнуть, чихать, не выходить на полную мощность, зажигать пиктограмму на приборной панели и всячески намекать владельцу на проблемы.

Вторым не менее важным недочётом является стоимость такого агрегата — это технически сложное устройство, требующее повышенного внимания и контроля ко всем системам, включая систему питания, зажигания, выпуска и электронику.

Чувствительность к качеству топлива — ещё один жирный минус, с которым готов мириться далеко не каждый автовладелец. Купив машину с системой непосредственного впрыска, вы гарантированно начнёте чрезвычайно тщательно подходить к выбору заправок: заливаться дешёвой горючкой, увы, уже не получится. И дело даже не в том, что таким моторам нужно особое октановое число — некоторые из них давно научились работать даже на 92-м бензине или спирте, — а в содержании в некачественном бензине соединений серы, фосфора, железа и прочих примесей, мешающих нормальной работе ДВС.

Наконец, отпугнуть от покупки машины с таким движком может и высокая стоимость запасных частей и обслуживания. Дешёвыми высокотехнологичные запчасти к ним не бывают, при этом требования к маслам, фильтрам и прочим «расходникам» также повышаются.

Но всё это меркнет на фоне плюсов:

Именно моторы с непосредственным впрыском являются наиболее технологичными, экономичными, лёгкими и тяговитыми. Они идеально подходят для эксплуатации в загруженных мегаполисах (именно в пробочных режимах ДВС с непосредственным впрыском наиболее экономичны), вдобавок они позволяют увеличивать интервал замены масла и обладают увеличенным сроком службы из-за уменьшения нагара (это достигается программно максимально эффективным сжиганием топливовоздушной смеси). Однако всего этого удаётся добиться только при чрезвычайно внимательном отношении к автомобилю и грамотном его обслуживании.

Источник

volkviv › Блог › Непосредственный впрыск.

Любой работник автосалона с гордостью заявит вам, что двигатель предлагаемого вам автомобиля «оборудован новейшим непосредственным впрыском». Чаще всего, при этом, смысл и принцип работы нововведения объяснить затруднится, но зато посулит немыслимую экономию («до 30%») и «увеличение мощности».

Между тем, «новейший» непосредственный впрыск, это технология разработанная еще в середине 30-х и серийно применявшаяся в годы Второй мировой, например, на истребителях «Мессершмитт 109».

Вскоре после войны немецкая инженерия несколько раз пыталась применить этот принцип на мелкосерийных автомобилях, в числе которых был и культовый Mercedes 300SL c механическим непосредственным впрыском — по сути, настоящий «бензиновый дизель».

Количество поломок систем первого поколения оказалось решающим — про принцип в промышленном масштабе забыли на пяток десятилетий, несмотря на заметную экономию на фоне примитивного карбюраторного смесеобразования.

Идея распылять топливо непосредственно в цилиндр стала практически полезной только в начале 90-х. Причина проста — экология и ее нормативы. Значительное количество времени при городском режиме движения автомобиль работает в режиме малых и частичных нагрузок, иногда топливо тратится практически «в пустую» — фактически только на поддержание холостых оборотов.

Хорошо было бы, подумали инженеры, для режимов малых нагрузок наполнять цилиндры бедной смесью, сильно отступив от пропорций стехиометрии. И если для полноценного горения за идеал принято соотношение 14.7 кг воздуха на 1 кг бензина плюс-минус 10%, то выгодным, с точки зрения экологии, было бы найти возможность поджигать смесь в несколько раз более бедную, экономя бензин. Раза так в 2-3 более бедную, иначе заметного результата не будет. Из практики однако известно, что уже соотношение более 15,7 вызывает проблемы с горением. При соотношениях более 22:1 эффективного воспламенения уже не происходит, что грозило затее провалом.

Читайте также:  Переделка ротора асинхронный двигателя

Вот тут-то про непосредственный впрыск и вспомнили. В отличие от обычного распределенного впрыска, где форсунка льет прямо во впускной канал, поместив форсунку прямо в цилиндр, мы получаем возможность управлять фазой и длительностью впрыска — впускной клапан уже не мешает. Это как видео против киноаппарата с обтюратором — когда источник топлива уже в цилиндре, управляй им как хочешь — ничто не мельтешит перед форсункой и не отвлекает от процесса. 🙂

Для режима частичных нагрузок впрыскивание организовали в момент начала такта сжатия. Топливо долетает до днища поршня специальной формы, попутно забирая часть тепла в цилиндре и препятствуя тем самым детонации, хорошо перемешивается с воздухом и вспыхивает к моменту конца сжатия совместно с дополнительно поданной порцией в итоговом соотношении всего около 40:1(!). В обычном же режиме, двигатель работает на уже привычном соотношении воздуха и бензина, близком к стехиометрии. Вот вам и зримая экономия.

Это как бы осязаемые плюсы. А теперь сюрприз, поговорим о недостатках.

Система питания обычного двигателя работает при давлении около 3,5 атм. Для этого нам требуется электронасос, не шибко отличающийся по конструкции, надежности и цене от насоса «Малыш» у вас на даче. Также потребуется несколько форсунок, по числу цилиндров — а это тоже не ахти какие большие затраты как при производстве так и при последующей возможной замене. Добавляем сюда только обычные шланги и фильтр. Неисправный насос сразу даст о себе знать и может быть довольно просто продиагностирован и заменен на аналогичный. С форсунками возни и проблем еще меньше — живут десятками лет.

А теперь вот вам, форсунка непосредственного впрыска, по сравнению с распределенным впрыском, это недешевые, сложные в производстве и довольно капризные форсунки с давлением от 50 до 200 атм. Сравните с 3,5 атм. Да, это не дизель с 1800-2500 атм, но уже совсем точно не «обычный» распределенный впрыск.

Систему дополнительно усложняет наличие ТНВД — самого насоса, который обеспечивает столь высокое давление. В принципе, любой насос — штука механическая. А если давления высокие, то потенциально проблемная.

Идем далее: осмоление и закоксовка рабочей части форсунки нарушают точность ее работы — чувствительность к качеству топлива заметно повышается. Надежность — нет.

Требования экологии подразумевают рециркуляцию картерных газов — избытка давления в масляной системе. Это минимум. А иногда еще и части выхлопных газов… То есть, пока двигатель не прогрет, часть выхлопных газов снова отправляется на впуск, «на переработку». Экология…

Вспоминаем теперь, что форсунка во впускные каналы уже не прыскает — грязь и отложения не смывает. А вентиляция именно через них и организована, что в итоге?! А вот что:

Закоксовывание приводит к затруднению закрытия клапана, что в скором времени гарантирует снижение компрессии в цилиндрах. Мотор начинает ощутимо потряхивать, а после цилиндры и вовсе отключаются. Применение масел обычного качества, что норма для всех производителей (LowSAPS, с низкой щелочностью и высоким NOACK индексом)
отпускает мотору пару-тройку лет сравнительно беспроблемного существования.

Теперь поговорим про прирост мощности и экономичности. Как современный (года так с 1990) автомобиль с условным 3-х литровым двигателем ел по городу 15-16 литров, так и ест. Без улучшений. Что с непосредственным впрыском, что с распределенным. Какие тесты журналисты не проводят — там везде примерно одни и те же цифры фактического расхода.

Мощность, точнее — момент? Для примера рассмотрим в сравнении два практически идентичных мотора — BMW N52 и BMW N53. Ну едва ли этот эксцесс в 20 Н/м можно назвать достижением, чиптюнингом можно достичь сравнимых результатов.

Непосредственный впрыск для реальных условий эксплуатации это:

1.Использование конструктивно сложных и потенциально ненадежных узлов и агрегатов.
2.Исключительно высокие требования к качеству топлива, а особенно — масла.
3.Снижение потребления топлива и увеличение мощности на практике малозначительны, или вообще отсутствуют.
4.Диагностирование неисправностей и ремонт значительно усложнены.

Покупая автомобили BMW, Audi, Mercedes и прочих марок с непосредственным впрыском топлива, найдите время разобраться с особенностями эксплуатации этих двигателей на основе практического опыта владельцев, а не рекомендаций производителя.

Комментарии 73

«То есть, пока двигатель не прогрет, часть выхлопных газов снова отправляется на впуск, «на переработку». Экология…» Часть выхлопных газов, практически (выше XX)постоянно отправляется в цилиндры — система EGR. Есть внутреннее «EGR», за счёт запаздывания в работе выпускных клапанов

Идея прямого впрыска известна с времён второй мировой войны. Messerschmitt Bf.109 летали уже с прямым впрыском. Сотый бензин производился в Англии, СССР, немцы делали синтетический бензин. Если не было 100 летали на 87 делали угол по позже. Всё новое, хорошо забытое старое.

а как вам давление наддува 1,5 бара на 87 октане при непосредственном впрыске? и это на минеральном масле типа автола, без ЭБУ, с закисью и метанолом!

Идеально масло для непосредственного выпрска это масла на базе ПАО и Эстеров

ПАО 3.8 — вспышка — 213С, застывания — (-72С)

ПАО 7 — вспышка — 277С, застывания — (-42)

*(Это данные из технических таблиц)

Ред Лайн/Идемитсу/Миллерс примерно похожи на ПАО 4 (50-60%) + с учетом Эстеров (18-20% у Миллерс ) и минералки для растворения присадок.

В старых ПАО маслах Валволин, в техдоках указывалось, что состав ПАО 4 — 64%, загустители 8-9%. Примерно такая картина и у Идемитсу, Ред Лайн и Миллерс.

Как видно, полностью ПАО только Татнефть

для непосредственного впрыска идеальны масла с кальцием примерно ниже 1600 ppm
читайте патент
речь идет о lspi
drive.google.com/file/d/0…4cll3M2s/view?usp=sharing

ПАО не панацея от всех бед.
В настоящий момент ПАО целесообразно использовать лишь в качестве дополнительного компонента для т.н. масел longlife!

Не согласен. Кальций уменьшают для уменьшения общей зольности.

Современные низкозольноые масла спецификации АСЕА С3 это сильно задушенное по присадкам масла. Для чего душат?

1. Новые экологические норма Европы по выбросам фосфатов.
2. Для уменьшения зольности.

Страдают моюще-диспергирующая способность и противоизносные свойства.
По выбросам фосфатов, которые попадают в камеру сгорания, а затем негативно отражаются на ДПФ фильтрах, есть такой момент.

Делали расчеты на зольность и выбросы между разницами малозольных и полнозольных масел, и разницой в качестве топлива (Евро 4 и Евро5).

Так вот, разница в количествах выброса между маслами полнозольник/малозольник и топливом Евро4/Евро5 отличается в 20-100 раз!

Т.е. разница во вреде от использования полнозольного масла против малозольного на столько мизерна, что не стоит данный вопрос даже рассматривать, а лучше беспокоиться о качестве топлива.

Теперь о другом факторе (второй момент). Зольность в масле. Зола образуется при окончательном сгорании элементов содержащих соли металлов. Для уменьшения зольности, производители масел пытаются перейти на беззольные аналоги, но по эффективности для замены традиционному пакету ZDDP пока ни чего не найдено.
Зола имеет свойство абсорбировать в себя продукты нитрации и окисления, т.е. углеродистые вещества. Абсорбируясь в золу продукты окисления увеличиваются в размерах и превращаются в тяжелые смолистые вещества. Удержать, которых, масло, в себе, уже не в состоянии. Смолистые вещества липнут на самых горячих участках двигателя (клапана, канавки поршневых колец и турбина. В основном, в первую очередь страдают клапана). Поэтому масла с индексом С3/С4/С2 рекомендуют для двигателей с прямым непосредственным впрыском топлива, где клапана не омываются топливом и их самоочистка не происходит. Технологии самоочистки клапанов в двигателях с прямым впрыском топлива, до сегоднешнего дня не существует. Но С3 не спасает от данной напасти, а лишь несколько замедляет процесс закоксовывания.

Читайте также:  Пыльник двигателя митсубиси асх

Теперь самое важное и главное, о чем не договаривают рекламодатели и многие знатоки двигателей, рекламирующих масла со спецификацией С3/С4/С2!

1. Процесс смолообразования происходит строго в определенный момент, когда упущен момент замены масла. Первая стадия это стадия индукции, когда масло еще имеет диспергирующие свойства, вторая стадия это стадия смолообразования, когда диспергирующих свойств больше нет и продукты окисления и нитрации начинают резко увеличиваться в размерах, и тут хоть С3 или А3 разницы практически ни какой, только сам процесс смолообразования чуть медленнее у С3.

ПРИЧЕМ! именно у С3 первая стадия индукции очень короткая из-за нехватки моюще-диспергирующих присадок!

2. Когда речь идет о полностью ПАО маслах, то абсолютно нет ни какой разницы по содержанию золы. Углеродистых веществ (продуктов окисления) в ПАО маслах не образуется или образуется очень медленно и незначительно мало!

3. При уменьшении зольности сильно страдают проитвоизносные свойства из-за нехватки присадков ZDDP. Сами инженера разработчики современных двигателей Мерседес, БМВ, Ауди НЕ рекомендуют Россиянам применять новые масла с последними допусками и масла со спецификацией С, из-за их малой противоизносной способности и способности борьбы с кислотами, по причине плохого качества топлива и тяжелых условий эксплуатации. Они рекомендуют полнозольные масла с полным содержанием ZDDP со старыми допусками.

4. Масла со спецификацией С не выдерживают высоких температур! Легко начинается процесс полимеризации. Мне самому до конца не ясно почему это происходит.

Очень много слов ни о чем!
melbu.livejournal.com/168497.html
Щепотку соды добавьте в любое масло и отложений не будет!

Я вижу, что ПАО уже конкретно превратили в религию!
А фактически — это безумство!

www.drive2.ru/b/2406066/
не я сно ему, чего тут не ясного: сода увеличивает щелочное число в разы и не дает прилипать в результате окисления.

Вместо щелочной неорганики в маслах С класса применяются беззольные детергенты органического происхождения.

ПАО не панацея и в настоящий момент применяется лишь как компонент, использование его в качестве базы нецелесообразно.

Эти слова основаны на матчасти. Вы видете только то, что хотите услышать. Наука родилась не вчера, ПАО эстеровые масла эксплуатируются с 30-х годов 20-го века, но все еще замена не найдена. За этот период каких только испытаний не проводила наука. И тут в раз уменьшением кальция все не решается.

Для минеральных ГК масел, куда приписывают маркетинговые пробеги под 15-20 тыс.км, возможно и стоит уменьшить кальций, чтобы образованный в итоге пластилин был менее плотнее и чернее

Эти слова основаны на прочтении достаточного количества литературы и на глубоком анализе всего этого: например drive.google.com/drive/fo…ZiWElMNDhZNkk?usp=sharing

Зачем ссылки? Выкладывайте скриншоты с переводом и с подчеркнутыми текстами! Ссылки это не докозательство. Тоже могу выбросить 10 ссылок и сказать, что анализ глубочайший

не хочу!
Это вы выкладываете картинки, а я не хочу!
я говорю своими словами, коротко и по делу!

Вот текст своими словами. Поверите?

Сранение масел III группы и IV ПАО

1. Смазывающая способность ПАО в 6,5 раза выше, чем у гидрокрекинга, прочность адсорбционной пленки 6,5 тонн/см2 у ПАО против 900 кг/см2 у парафинового гидрокрекинга.

ПАО вместе с Эстерами обладает прочностью масляной пленки уже в 22-25 тонн/см2.
Помнить! что в момент пуска и до нагрева масла до 150С ни какая противоизносная/противозадирная присадка не работают, работает только сама база и загустители.
Минимальная необходимая прочность масляной пленки на холостом ходу составляет 10 тонн/см2 (распределительная система).
На парафиновом гидрокрекинговом масле в момент пуска и до полного прогрева идет усиленный износ распредвалов и толкателей. Именно поэтому с пробегом авто теряет мощность.

2. Максимальная рабочая температура гидрокрекинга это 130С, дальше он просто перестает быть маслом.Масло превращается в воду. Адсорбционная пленка разрывается.

3. Гидрокрекинговое масло после остановки двигателя полностью стекает в картер из-за отсутствия полярности молекул. Двигателисты давно заметили, автомобиль вечером приезжает своим ходом на ремонт, ремонт начинают рано утром. При разборе обнаруживают, что цинидры и распредвалы покрыты слоем ржавчины.

Одним из лучших преимуществ ПАО-Эстеров является то, что они не стекают в картер даже через сутки после остановки автомобиля. Помните рекламу Кастрол Магнатек про умные молекулы, которые работают с первой секунды пуска двигателя? Там говорится именно про Эстеры. Хотя в этом Магнатеке самих Эстеров нет уже с 1999 года, просто реклама осталась.

4. Потеря вязкости и важного параметра HTHS. Любое гидрокрекинговое масло состоит из базы (0w=3.5 cst; 5w=4 cst и т.д.) + чтобы достичь второго значения Y, в масло добавляют полимерные загустители в больших количествах. Вот тут-то все современные производителя борятся между собой у кого круче загустители тот и получает крутые допуски. Но нет в Природе таких загустителей, которые не просаживались бы (не подвергались бы деструкции молекул — потере связи молекул) и не горели бы (полимеризация). Вязкость гидрокрекинговой 5w-40 уже через 1000 км становится 5w-30, а еще через 4000 км становится 5w-20. Во время езды, гидрокрекинговый 5w-40 становится 5w-10, затем после охлаждения восстанавливается заново, но уже не полностью.
На самом деле загустители быстро теряют молекулярную связь при езде и быстро восстанавливают вязкость после остывания, но не до конца. ПАО +Эстеры практически не содержат загустителей, т.к. они программируются уже в момент производства, Эстеры выступают как конструктор дающий чудо свойства маслам. Именно поэтому Гидрокрекинговые масла имеют индекс вязкости выше 180, а ПАО+Эстеры от 150 до 160, т.к. не содержат загустителей. Помнить! Загустители это главное зло в любом масле!

5. В ПАО маслах не образуется сажа, не образуется серная кислота, не образуется кокс в канавках поршневых колец и клапанах, не образуются смолы. Даже при пробеге в 800 тыс.км двигатель во всех его скрытых частях будет кристально чистым. Чего не скажешь про гидрокрекинг, он коксуется в любом случае, даже если с виду двигатель чист, то на самых горячих участках (клапана, канавки поршневых колец) неизбежно образуется кокс, т.к. углероды имеют свойство к нитрации, т.е. молекулы распадаются на тяжелые углеродистые соединения при окислении и затем уже эти соединения слипаются между собой образуя кристаллические решетки (нагары коксы лаки и т.д.).

6. Прокачиваемость и охлаждаемость ПАО выше на 30-40%, что не маловажно для тяжелых условий и для двигателей с турбонаддувом, где температура в турбине и в зоне подшипника турбины достигает 950С!

8. Присадки гораздо эффективнее работают с ПАО, т.к. молекулы ПАО не замещают их, не мешают присадкам, доказано всеми старыми и новейшими исследованиями.

9. Срок хранения ПАО не ограничен. Гидрокрекинг ограничен.

10. Износостойкость с ПАО не теряется на всем протяжении моточасов, у гидрокрекинговых масел износ от моточасов резко увеличивается, скачкообразно, и замена раз в 3000-5000 км не спасает положение.

Источник