Неустойчивая работа асинхронного двигателя

Содержание
  1. Механическая характеристика асинхронного двигателя при различных режимах, напряжениях и частотах
  2. Как найти скрытые неисправности в многофазных асинхронных электродвигателях, которые ведут к повышенному расходу электроэнергии
  3. Какие неисправности бывают в электродвигателях
  4. Обрыв обмотки в треугольнике
  5. Обрыв обмотки в звезде
  6. Как избежать некачественного ремонта
  7. 5.8. Устойчивость работы асинхронного двигателя
  8. Неисправности электродвигателя причины и способы их устранения
  9. Неисправности электродвигателя
  10. Электродвигатель сильно гудит при запуске, не набирает оборотов, или не запускается совсем.
  11. Сильный нагрев в подшипниках скольжения.
  12. Сильный нагрев в подшипниках качения.
  13. Корпус электродвигателя сильно нагревается при работе.
  14. Искрение при работе ЭД и появление дыма.
  15. Повышенные вибрации при работе ЭД.
  16. Колебания потребления тока статора ЭД в процессе его работы.
  17. Искры из коллекторно-щеточного узла. Сильный нагрев и обгорание соответствующей арматуры.
  18. Активная сталь статора перегревается равномерно по всей поверхности.
  19. Сильный нагрев активной стали статора в отдельном месте на холостом ходу при штатном напряжении в сети.
  20. ЭД с фазным ротором при загрузке не выходит на номинальные обороты.
  21. Двигатель с фазным ротором запускается при незамкнутой цепи ротора, а под нагрузкой не может выйти на номинальный режим.
  22. Неисправность: Двигатель с короткозамкнутым ротором не набирает штатное количество оборотов.
  23. При запуске электродвигателя электрическая дуга перекрывает контактные кольца.
  24. 17 Статическая устойчивость асинхронного двигателя

Механическая характеристика асинхронного двигателя при различных режимах, напряжениях и частотах

На практике для графического построения механической характеристики пользуются упрощенной формулой, называемой формулой Клосса:

Формула Клосса применяется при решении вопросов, связанных с электроприводом, осуществляемым с помощью асинхронного двигателя. Пользуясь формулой Клосса можно построить график механической характеристики по паспортным данным асинхронного двигателя. Для практических расчетов в формуле при определении критического момента перед корнем следует принимать во внимание только знак плюс.

Рис. 1. Асинхронный двигатель: а — принципиальная схема, б — механическая характеристика М=f(S) — естественная в двигательном и генераторном режимах, в — естественная механическая характеристика n=f(М) в двигательном режиме, г — искусственные реостатные механические характеристики, д — механические характеристики для различных напряжений и частот.

Асинхронный двигатель с короткозамкнутым ротором

Как видно из рис. 1, механическая характеристика асинхронного двигателя располагается в I и III квадрантах. Часть кривой в I квадранте соответствует положительному значению скольжения и характеризует двигательный режим работы асинхронного двигателя, а в III квадранте — генераторный режим. Наибольший практический интерес представляет двигательный режим.

График механической характеристики двигательного режима содержит три характерные точки: А, В, С и условно может быть подразделен на два участка: ОВ и ВС (рис. 1, в).

Точка А соответствует номинальному моменту двигателя и определяется по формуле Мн = 9,55 •10 3 • (P н/ n н)

15%. К ним относятся, например, двигатели единой серии АС.

Величина пускового момента при постоянных величинах напряжения и частоты тока зависит от активного сопротивления в цепи ротора. При этом вначале с возрастанием активного сопротивления увеличивается величина пускового момента, достигая своего максимума при равенстве активного сопротивления цепи ротора и полного индуктивного сопротивления двигателя. В дальнейшем с возрастанием активного сопротивления ротора величина пускового момента уменьшается, стремясь в пределе к нулю.

Следует иметь в виду, что величина критического момента не зависит от активного сопротивления роторной цепи, в то время как критическое скольжение S к прямо пропорционально этому сопротивлению. Это означает, что с увеличением активного сопротивления роторной цепи величина критического момента остается неизменной, однако максимум кривой момента смещается в сторону возрастающих значений скольжения (рис. 1, г).

Величина критического момента прямо пропорциональна квадрату напряжения, подводимого к статору, и обратно пропорциональна квадрату частоты напряжений и частоты тока в статоре.

Если, например, напряжение, подводимое к двигателю, будет равно 85% номинального значения, то величина критического момента при этом составит 0,85 2 = 0,7225 = 72,25% критического момента при номинальном напряжении.

Обратное явление наблюдается при изменении частоты. Если, например, к двигателю, предназначенному для работы с частотой тока f = 60 гц, подвести ток частотой f = 50 гц, то критический момент получит в (60/50) 2 = 1,44 раза большее значение, чем при своей формальной частоте (рис. 1, д).

Критический момент характеризует собой мгновенную перегрузочную способность двигателя, т. е. он показывает, какую мгновенную (на несколько секунд) перегрузку способен перенести двигатель без каких-либо вредных последствий.

Объясняется такое деление тем, что на возрастающей части характеристики ОВ с увеличением скольжения, т.е. с уменьшением скорости, растет развиваемый двигателем момент. Это означает, что при увеличении нагрузки, т. е. при возрастании тормозного момента, уменьшается скорость вращения двигателя, а развиваемый им момент увеличивается. При снижении нагрузки, наоборот, скорость возрастает, а момент уменьшается. При изменении нагрузки на всем диапазоне устойчивой части характеристики происходит изменение скорости вращения и момента двигателя.

Механическая характеристика при постоянных U и I и отсутствии добавочного сопротивления в цепи ротора называется естественной характеристикой (характеристика короткозамкнутого асинхронного двигателя с фазным ротором без добавочного сопротивления в цепи ротора). Искусственными, или реостатными, характеристиками называются такие, которые соответствуют добавочному сопротивлению в цепи ротора.

Все значения пусковых моментов различны между собой и зависят от активного сопротивления цепи ротора. Одному и тому же номинальному моменту Мн соответствуют скольжения различной величины. С увеличением сопротивления цепи ротора возрастает скольжение и, следовательно, уменьшается скорость вращения двигателя.

Благодаря включению в цепь ротора активного сопротивления механическая характеристика в устойчивой части вытягивается в сторону возрастания скольжения, пропорционально сопротивлению. Это означает, что скорость двигателя начинает сильно меняться в зависимости от нагрузки на валу и характеристика из жесткой делается мягкой.

Источник

Как найти скрытые неисправности в многофазных асинхронных электродвигателях, которые ведут к повышенному расходу электроэнергии

Довольно часто асинхронные электродвигатели не выходят из строя полностью, а продолжают функционировать на производстве, строительных площадках с многочисленными скрытыми дефектами и поломками. Незначительный перегрев, гул, вибрацию низкоквалифицированные работники списывают на старость электродвигатели. На самом же деле любой многофазный электродвигатель может работать очень долго, потребляя адекватное количество тока. В рамках данной публикации будет рассказано о том, как быстро найти скрытые неисправности в многофазных асинхронных электродвигателях, которые ведут к повышенному расходу электроэнергии.

Читайте также:  Работа двигателя самолета формула

Какие неисправности бывают в электродвигателях

Перво-наперво, необходимо разделить все неисправности на два класса – это механические и электрические неполадки. К чисто механическим изъянам можно отнести, к примеру, полное или частичное механическое разрушение шарикоподшипников, деформация вала ротора, ослабление отпрессованного крепления сердечника ротора. К электрическим недостаткам относят все, что касается обмоток и изоляции, а именно: обрыв одной фазной обмотки, межвитковое замыкание, утечка тока на корпус через износившуюся изоляцию. Несмотря на кажущуюся критичность всех вышеперечисленных недостатков, асинхронные трехфазные электродвигатели могут продолжать работать долгие годы с этими недостатками. Даже обрыв одной из фаз в ряде случаев проходит так, что электродвигатель продолжает запускаться, поддерживать близкую к номинальной мощность, а также развивать номинальный крутящий момент на валу.

Обрыв обмотки в треугольнике

Как правило, чаще всего это происходит в случае внутреннего обрыва одной из обмоток трехфазного электродвигателя, подключенного к источнику электроэнергии по топологии «треугольник». Из практики известно, что оборванная обмотка никоим образом не мешает нормальной работе электродвигателя – оставшиеся две обмотки берут на себя всю мощность через подсоединение к сети по топологии «открытый треугольник». Понятное дело, двигатель набирает обороты, держит нагрузку, но происходит чрезмерный нагрев двух подключенных фаз. При относительно долгой эксплуатации асинхронного силового агрегата под нагрузкой на валу в таком неверном режиме включения происходит неминуемое выгорание задействованных обмоток статора.

Обрыв обмотки в звезде

Если электродвигатель либо работает в холостом режиме, либо под незначительной нагрузкой на валу, которая ни при каких обстоятельствах не превышает половину от номинальной, то электродвигатель продолжает работать и с оборванной фазной обмоткой статора.

Практика показывает, обрыв обмотки статора в трехфазном электродвигателе, включенном в сеть по топологии «звезда», однозначно приводит к тому, что электродвигатель отказывается запускаться, если его сначала полностью остановить. Двигатель просто-напросто греется, издает неприятный гул, слегка вибрирует ротором, но отказывается запускаться. Обрыв обмотки приводит к тому, что не образуется вращающееся магнитное поле. Образуется простое пульсирующее поле, которое не приводит к вращению ротора. Безусловно, двигатель можно запустить, но для этого необходимо предварительно раскрутить вал ротора. Естественно, возрастает электропотребление, шум, а также общий износ двигателя.

Единственно верное решение проблемы обрыва обмотки – это нахождение дефектной обмотки и ее перемотка. Любая скрутка, спайка внутри обмотки просто неприемлема. Лучше и надежнее перемотать всю обмотку сохраняя число витков, а также сечение обмоточной проволоки.

Как избежать некачественного ремонта

Первое и самое важное правило – это не изобретать велосипед. Некоторые умельцы считают, что увеличение или уменьшение числа витков в обмотках может улучшить эксплуатационные характеристики асинхронного электродвигателя. На практике все в точности, да наоборот: уменьшение числа витков на 15% приводит к увеличению тока холостого хода на 30%, а увеличение числа витков в фазной обмотке, которое достигнуто благодаря выбору проволоки более низкого сечения, приводит к значительному нагреву электродвигателя под номинальной нагрузкой. Также не стоит стачивать ротор, если он задевает статор из-за чрезмерного износа шарикоподшипников, деформации вала ротора. Увеличение воздушного зазора между ротором и статором неминуемо приводит к тому, что снижается показатель косинуса фи на 0.15–0.2.

Источник

5.8. Устойчивость работы асинхронного двигателя

Под устойчивостью работы электродвигателя понимают способность двигателя восстанавливать установившуюся частоту вращения при кратковременных возмущениях (изменения нагрузки, напряжения питающей сети и т. д.).

5. Асинхронные машины

При M = M c ускорение ротора

Устойчивость зависит от конкретных условий, при которых работает электродвигатель, в частности от формы механических характеристик двигателя и приводимого им во вращение производственного механизма.

Типичные механические характеристики производственных механизмов приведены на рис. 5.21, а. Независимость статического момента от частоты вращения ( M c = const, кривая 1) характеризует грузоподъемные механизмы (лифты, краны, лебедки и т. д.). У вентиляторов, центробежных насосов, гребных винтов нагрузочный момент пропорционален (кривая 2) второй степени частоты вращения ( M c = cn 2 ). Эту характеристику называют вентиляторной.

Тяговый электропривод, как правило, имеет характеристику, соответствующую уравнению M c = c/n (кривая 3). Большое трение в состоянии покоя и при малых частотах вращения характерно для бетономешалок и шаровых мельниц. В таких механизмах при увеличении частоты вращения нагрузочный момент падает (кривая 4).

Рис. 5.21. Механические характеристики некоторых механизмов ( а ) и графики для определения статической устойчивости асинхронного двигателя ( б )

5. Асинхронные машины

Условия устойчивой работы рассмотрим на примере работы двигателя совместно с механизмом, у которого нагрузочный момент M c падает при увеличении частоты вращения (рис. 5.21, б ).

ток в роторе I 2 = r 2 sE + 20 j x 2 и электромагнитный момент до значения M′.

Изменение момента на валу двигателя, работающего в режиме, соответствующем точке а (рис. 5.21, б ), неизбежно приведет к остановке двигателя (если момент M c увеличить) или значительному увеличению частоты вращения и уменьшению скольжения до s = s c (если момент нагрузки уменьшить).

момент двигателя M :

Повышению устойчивости асинхронного двигателя способствует увеличение его максимального момента (кратности максимального момента в соответствии с выражением (5.93) или его перегрузочной способно-

Источник

Неисправности электродвигателя причины и способы их устранения

Неисправности электродвигателя

Чтобы быстро определить неисправности электродвигателя, почему электродвигатель вышел из строя и в каких узлах произошел сбой, предлагаем Вам ознакомиться со списком наиболее популярных неисправностей. Ниже приведены характерные неисправности электродвигателя, причины возникновения и способы их правильного устранения.

Электродвигатель сильно гудит при запуске, не набирает оборотов, или не запускается совсем.

Причина: Обрыв цепи статора, обрыв цепи одной из фаз (наконечник, кабель, контактор), перегорела защитная вставка.
Решение: Восстановить цепь питания, проверить и сменить предохранитель.

Причина: Обрыв обмотки статора.
Решение: Перемотать статор.

Причина: Обрыв в цепи фазного ротора (кабель, реостат, щетки).
Решение: Восстановить цепь ротора.

Причина: Нарушение контакта между стержнями и кольцами в короткозамкнутом роторе (дым и искры).
Решение: Ремонт ротора.

Причина: Заклинивание вала ЭД или привода.
Решение: Произвести очистку двигателя или его механизма от возможных загрязнений.

Причина: Низкий пусковой момент, который не позволяет ротору набрать обороты.
Решение: Замена на аналогичный двигатель с большим пусковым моментом.

Причина: Соединение звездой вместо треугольника
Решение: Проверить правильность схемы соединения, произвести переподключение.

Читайте также:  Почему свист в двигателе

Сильный нагрев в подшипниках скольжения.

Причина: Отсутствие или недостаточное количество смазки.
Решение: Произвести смазку подшипников должным образом.

Причина: В масле имеются примеси и механические частицы.
Решение: Произвести замену смазки.

Причина: Износ деталей полумуфт, дефект кольца, бой шейки вала и т.п.
Решение: Ремонт механической части двигателя.

Сильный нагрев в подшипниках качения.

Причина: Отсутствие или недостаточное поступление смазки, избыток смазки.
Решение: Произвести смазку подшипников должным образом, проследить за возможными утечками, убрать излишки смазки.

Причина: Дефекты подшипника, выраженные посторонним шумом.
Решение: Замена подшипника.

Корпус электродвигателя сильно нагревается при работе.

Причина: Слабая работа принудительной системы охлаждения.
Решение: Очистка каналов и технологических отверстий.

Причина: Забиты вентиляционные каналы для пропускания холодного воздуха.
Решение: Продувка сжатым воздухом.

Причина: Повышенная нагрузка по току.
Решение: Понизить нагрузку или заменить на ЭД большей мощности.

Искрение при работе ЭД и появление дыма.

Причина: Ротор соприкасается с поверхностью статора.
Решение: Ремонт двигателя.

Причина: Некорректная работа в защитной или пускорегулирующей системе.
Решение: Диагностика защитной или пускорегулирующей системы и устранение дефектов.

Повышенные вибрации при работе ЭД.

Причина: Износ соединительных муфт
Решение: Отсоединить муфты и проверить ЭД без подключения к механизму.

Причина: Нарушена центровка двигателя и механизма.
Решение: Проверить и затянуть крепежные детали, а также крепления к станине.

Причина: Износ подшипников, разбалансировка ротора, взаимное смещение положения ротора и статора.
Решение: Ремонт ЭД.

Колебания потребления тока статора ЭД в процессе его работы.

Причина: Плохое соединение в цепи – для фазного ротора, для короткозамкнутого ротора – плохое соединение между стержнями и кольцами.
Решение: Ремонт ЭД (при больших колебаниях – незамедлительно, при небольших скачках – чем раньше – тем лучше).

Искры из коллекторно-щеточного узла. Сильный нагрев и обгорание соответствующей арматуры.

Причина: Щетки плохо отшлифованы.
Решение: Отшлифовать щетки.

Причина: Недостаточный зазор для свободного движения щеток в щеткодержателях.
Решение: Выставить допустимый зазор в пределах 0.2-0.3 мм.

Причина: Загрязнение контактных колец или щеток.
Решение: Произвести очистку, устранить источник распространения загрязнения.

Причина: На контактных кольцах имеются борозды и неровности.
Решение: Проточить и произвести шлифовку колец.

Причина: Слабый прижим щеток.
Решение: Отрегулировать усилие нажатия.

Причина: Отсутствует равномерное распределение тока между щетками.
Решение: Отрегулировать усилие нажатие щеток и их свободный ход в щеткодержателях, проверить состояние контактной группы Траверс, оценить состояние токопроводов.

Активная сталь статора перегревается равномерно по всей поверхности.

Причина: Повышенное напряжение питания.
Решение: Организовать дополнительное охлаждение электродвигателя и понизить напряжение электросети до штатного уровня.

Сильный нагрев активной стали статора в отдельном месте на холостом ходу при штатном напряжении в сети.

Причина: Местное КЗ между отдельными листами активной стали.
Решение: Очистить и прошлифовать место соприкосновения листов, покрыть их диэлектрическим лаком.

Причина: Нарушена изоляция в местах стяжки активной стали.
Решение: Восстановить изоляцию на данных участках.

ЭД с фазным ротором при загрузке не выходит на номинальные обороты.

Причина: Некачественное соединение в пайке контактного кольца ротора.
Решение: Произвести контроль надежности пайки визуально и «проверкой с падением напряжения».

Причина: Слабый контакт обмотки ротора с контактным кольцом.
Решение: Проверить и восстановить токопроводящие соединения.

Причина: Слабое соединение в щеточном узле и механизме КЗ ротора.
Решение: Произвести шлифовку и регулировку усилия прижатия щеток.

Причина: Слабое соединение контактных проводов в пусковой аппаратуре.
Решение: Восстановить целостность и надежность контактов на соответствующем участке.

Двигатель с фазным ротором запускается при незамкнутой цепи ротора, а под нагрузкой не может выйти на номинальный режим.

Причина: КЗ в обмотке якоря, соединительных хомутах лобовых соединений.
Решение: Изолировать соприкасающиеся хомуты, Устранить КЗ и произвести замену поврежденной обмотки якоря.

Причина: КЗ обмотки ротора по двум участкам одновременно.
Решение: Устранить КЗ и произвести замену обмотки неисправной катушки.

Неисправность: Двигатель с короткозамкнутым ротором не набирает штатное количество оборотов.

Причина: Отработало тепловое реле, вышли из строя предохранители или автомат.
Решение: Проверка и устранение данных неисправностей.

При запуске электродвигателя электрическая дуга перекрывает контактные кольца.

Причина: В щеточном узле или на контактных кольцах присутствует пыль, грязь.
Решение: Провести чистку.

Причина: Высокая влажность в месте эксплуатации ЭД.
Решение: Нанести дополнительный слой диэлектрика или произвести замену ЭД на другой, пригодный для эксплуатации в текущих условиях.

Причина: Обрыв в контактных соединениях реостата или ротора.
Решение: Провести диагностику всех соединений, устранить неисправности.

Источник

17 Статическая устойчивость асинхронного двигателя

7. Статическая устойчивость асинхронного двигателя

В промышленности и сельском хозяйстве основными потребителями электроэнергии являются асинхронные двигатели (60-70%), синхронные двигатели составляют 10%, осветительная нагрузка 20-30%. В связи с этим, представляет интерес исследование статической устойчивости асинхронных двигателей в нормальном режиме работы энергосистемы при малых возмущениях, т.к. если группа асинхронных двигателей имеет мощность, соизмеримую с мощностью источника питания, то в этом случае их режим работы может оказать существенное влияние на устойчивость энергосистемы в целом.

Рис. 7.1. Характеристика асинхронного двигателя при различных значениях питающего напряжения

Статическая [Я1]устойчивость асинхронных двигателей

Под статической устойчивостью электрической машины понимается ее способность возвращаться к установившемуся режиму после малых возмущений. Причинами, вызывающими нарушение статической устойчивости, могут быть: значительное увеличение внешнего сопротивления (отключение части питающих линий) или мощности приводного механизма, а также снижение напряжения в узле нагрузки. Обычно запас по статической устойчивости нагрузки оценивается величиной допустимого снижения напряжения в точке питания.

Значения напряжения на зажимах двигателей и независимой от режима работы двигателей э.д.с. источника питания называются критическими, если они соответствуют пределу статической устойчивости. Значения и обычно определяются при номинальной частоте.

,

,

где — номинальный коэффициент мощности двигателя,

,

— внешнее сопротивление двигателя,

при номинальном скольжении

где — кратность максимального момента двигателя,

, — определяются по паспортным данным двигателя.

Нарушение статической устойчивости двигателя можно пояснить, рассматривая механические характеристики приводного механизма (кривая 1 на рис. 7.2) и двигателя, определенные при различных значениях напряжения. Механические характеристики асинхронного двигателя при номинальном и критическом напряжениях представлены кривыми 2 и 3 на рис. 7.2. Кривая 1 характеризует приводной механизм.

При напряжении рабочей точкой двигателя является точка А, скольжение при этом равно номинальному. При напряжении наступает критический режим (точка В) и двигатель работает со скольжением, равным критическому.

Читайте также:  Ремонт автомобиля в соколе

При напряжении происходит нарушение устойчивости при скольжении несколько большем, чем критическое (точка С, кривая 4). Критический режим характеризуется критериями и .

Статическая устойчивость асинхронного двигателя обычно определяется по следующим критериям:

Рис. 7.2. Механические характеристики асинхронного двигателя и приводного механизма

При этом коэффициент запаса статической устойчивости может быть определен по выражениям:

,

,

,

В выражении (7.7) максимальная мощность берется по асинхронной характеристике согласно выражениям:

где — определяется как номинальная мощность двигателя.

Влияние напряжения и коэффициента загрузки двигателя на потребляемую им реактивную мощность и запас статической устойчивости

Реактивная мощность, потребляемая асинхронным двигателем, определяется двумя составляющими: — реактивной мощности намагничивания и — реактивной мощности рассеяния:

Реактивная мощность намагничивания зависит от величины напряжения:

,

т.к. , то принимаем:

где ,

— фактическое напряжение на шинах двигателя,

.

Реактивная мощность рассеяния зависит как от величины напряжения сети, так и от коэффициента загрузки двигателя и определяется по выражению:

,

где — приведенный ток ротора.

где , .

При номинальном режиме реактивная мощность двигателя составит:

С учетом изменения напряжения и величины загрузки двигателя, потребляемая реактивная мощность будет равна:

При критическом режиме величина потребляемой реактивной мощности равна:

Отношение реактивных мощностей

При помощи выражения (7.14) можно определить изменение потребления реактивной мощности двигателя при изменении нагрузки на валу двигателя и напряжения сети.

Следует отметить, что увеличение реактивной мощности вызывает увеличение потерь активной мощности и потерь энергии в двигателе и сети.

7.1 Рабочие характеристики асинхронного двигателя

Под рабочими ха­рактеристиками асинхронного двигателя мы понимаем:

Кроме того, к важным показателям относится коэффициент перегрузочной способности , а для короткозамкнутых двигате­лей—также кратности пускового тока и пускового момента.

А. Скорость вращения двигателя

Таким образом, скольжение асинхронного двигателя численно равно отношению потерь в обмотке ротора к развиваемой дви­гателем электромагнитной мощности .

Б. Зависимость . При установившемся режиме ра­боты , где полезный тормозной момент двига­теля, а момент холостого хода. Так как при изменении на­грузки в пределах от холостого хода до номинальной скорость вращения асинхронных двигателей остается почти постоянной, то зависимость асинхронного двигателя почти прямоли­нейна (рис 7.3).

В. Потери и к. п. д. двигателя. В асинхронных двигателях имеют место все те же виды потерь, что и в других электрических машинах,— механические потери, потери в стали, потери в меди и добавочные потери.

Особую группу потерь состав­ляют добавочные потери. Они состоят из а) добавочных потерь в меди и б) добавочных потерь в стали. При синусоидальном напряжении на зажимах двигателя добавочные потери в меди возникают частью под влиянием высших гармонических н. с., частью вследствие эффекта вытеснения тока.

Добавочные потери в меди от высших гармонических н. с. имеют место главным образом в обмотках ротора с беличьей клеткой. При вращении ротора в магнитных полях, создаваемых высшими гармоническими н. с. статора, в обмотке ротора возни­кают токи, имеющие частоту, отличную от частоты скольжения и зависящую от скорости вращения ротора. Для уменьшения этих потерь производят: а) укорочение шага обмотки статора, веду­щее к уменьшению высших гармонических н. с., б) скос пазов ротора относительно пазов статора, играю­щий ту же роль, что и укорочение шага, и в) соответствующий подбор числа пазов на статоре и роторе и . Анализ пока­зывает, что если добавочные потери в ро­торе не должны превышать 10% от основ­ных потерь, вызванных первой гармониче­ской тока, то при нескошенных пазах

Рис. 7.4. Кривая индукции в воздушном зазоре

Явление вытеснения тока наблюдается как в обмотках статора, так и в обмотках ротора, особенно с беличьей клеткой. Здесь оно может быть использовано для улучше­ния пусковых характеристик двигателей с короткозамкнутым ротором. Но при нормальной работе частота тока в роторе обычно не превышает 3 Гц. В этих условиях выте­снение тока практически незаметно.

Поскольку добавочные потери от высших гармонических н. с. создаются токами, имеющими частоту, отличную от частоты пер­вой гармонической тока, они покрываются развиваемой двигате­лем механической мощностью.

Можно считать с достаточной точностью, что добавочные потери в меди изменяются пропорционально квадрату тока.

Добавочные потери в стали асинхронных машин состоят, так же как и в синхронных машинах, из а) пульсационных потерь и б) поверхностных потерь.

Поверхностные потери обусловливаются главным образом тем, что под влиянием пазов распределение индукции в зазоре оказы­вается неравномерным (рис. 7.4). Частота поверхностных пуль­саций та же, что и пульсаций в зубцах. Анализ показывает, что поверхностные потери зависят от частоты в степени 1,5 и квад­рата среднего значения индукции в зазоре.

Так как добавочные потери в стали имеют частоту, отличную от основной, то они покрываются за счет механической мощности, развиваемой двигателем.

Можно считать с достаточной точностью, что добавочные по­тери в стали изменяются пропорционально квадрату подводимого к двигателю напряжения.

Полные потери в двигателе:

При нагрузках в пределах от холостого хода до номинальной под следует понимать только потери в стали статора, так как при обычных частотах в роторе (1—3 Гц) потери в его стали исчезающе малы.

При увеличении нагрузки сумма потерь несколько уменьшается вследствие уменьшения основного потока, а также уменьшения скорости вращения. Обычно это уменьшение не пре­вышает 4—8%, поэтому и данные потери относят к постоянным потерям двигателя.

В противоположность потерям в стали потери в меди изме­няются пропорционально квадрату тока.

Добавочные потери, как мы видели, зависят частью от тока, частью от напряжения. Для простоты считают, что они изменя­ются пропорционально подводимой мощности.

Максимум к. п. д. достигается при равенстве постоянных и переменных потерь; та­ким образом, соответственно перераспределяя потери, мы можем получить двигатели с различной формой кривых к.п.д. На рис. 7.3 показана типичная кривая к. п. д. асинхронного двигателя, достигающая максимума примерно при 75% номинальной на­грузки.

Для иллюстрации в табл. 7.3 приведены значения к. п. д. и коэффициента мощности для двигателей разной мощности с контактными кольцами и короткозамкнутым ротором при n =1000 об/мин и 2р=6.

Источник