Низковольтный трехфазный асинхронный двигатель

Содержание
  1. Асинхронный трёхфазный двигатель
  2. 1. Применение трёхфазных двигателей в стиральных машинах
  3. 2. Общие сведения о трёхфазном токе и трёхфазном двигателе
  4. 3. Система управления трёхфазным двигателем (инвертор)
  5. 4.Диагностика трёхфазных асинхронных двигателей.
  6. 5. Преимущество и недостатки трёхфазных двигателей в стиральных машинах
  7. Трехфазный асинхронный двигатель
  8. Трехфазный асинхронный двигатель с короткозамкнутым ротором
  9. Конструкция асинхронного электродвигателя
  10. Принцип работы. Вращающееся магнитное поле
  11. Концепция вращающегося магнитного поля
  12. Действие вращающегося магнитного поля на замкнутый виток
  13. Короткозамкнутый ротор асинхронного двигателя
  14. Скольжение асинхронного двигателя. Скорость вращения ротора
  15. Звезда и треугольник
  16. Обозначение выводов статора трехфазного электродвигателя
  17. Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента
  18. Управление асинхронным двигателем
  19. Прямое подключение к сети питания
  20. Нереверсивная схема
  21. Реверсивная схема
  22. Плавный пуск асинхронного электродвигателя
  23. Частотное управление асинхронным электродвигателем
  24. Трехфазный асинхронный двигатель с фазным ротором
  25. Конструкция АДФР
  26. Фазный ротор
  27. Статор АДФР
  28. Обозначение выводов вторичных обмоток трехфазного АДФР
  29. Пуск АДФР

Асинхронный трёхфазный двигатель

1. Применение трёхфазных двигателей в стиральных машинах

Асинхронный трёхфазный электродвигатель был изобретён в 1889 году русским электротехником Доливо-Добровольским. Трёхфазные двигатели получили широкое применение в различной промышленной технике, в том числе и в промышленных стиральных машинах. С развитием современных технологий и электронных систем управления, подобные двигатели стали распространены и в бытовой технике. В бытовых стиральных машинах трёхфазные двигатели стали применяться примерно с 2005 года. Сегодня можно встретить такие двигатели только в некоторых моделях стиральных машин торговых марок: AEG, Electrolux, Ariston, Indesit, Whirpoll, Candy, Bosch, Siemens, Miele, Haier. Трёхфазные двигатели из-за низкого уровня шума, очень часто применяются в так называемых бесшумных стиральных машинах.

2. Общие сведения о трёхфазном токе и трёхфазном двигателе

Как известно из курса электротехники, в промышленности трёхфазный ток создаётся трёхфазным генератором, который имеет три обмотки сдвинутые относительно своей геометрической оси на угол 120°, поэтому на выходе каждой из обмоток генератора образуются переменные токи, фазы которых соответственно сдвинуты друг относительно друга также на 120°.
График трёхфазного тока представлен на (Рис.2).
Конструкция и принцип работы трёхфазного и однофазного асинхронных двигателей почти одинаковы. Разница лишь в обмотках статора. Трехфазные электродвигатели имеют на статоре трёхфазную обмотку, каждая секция обмоток которых сдвинута на 120°. Ротор (подвижная часть) трёхфазного двигателя имеет такую же конструкцию, что и однофазные асинхронные двигатели, т.е. состоит из короткозамкнутой обмотки в виде «беличьего колеса». Статор (неподвижная часть) состоит из сердечника в пазы которого уложены секции обмоток и подключены к контактной колодке двигателя.
В отличие от однофазного асинхронного конденсаторного двигателя, трёхфазный двигатель подключённый к трёхфазной сети, не нуждается в пусковом конденсаторе, поскольку сдвиг фаз токов необходимый для образования пускового момента и вращающегося кругового магнитного поля обусловлен самой системой питания.
Трёхфазные асинхронные двигатели могут работать так же от однофазной сети, но с потерей мощности примерно на 50% и естественно уже с применением пусковой схемы построенной на конденсаторах.

3. Система управления трёхфазным двигателем (инвертор)

Выше, мы провели очень краткий обобщающий обзор по трёхфазному току и трёхфазному асинхронному двигателю. На самом деле, в электротехнике этот материал занимает очень большой раздел, с описанием всех физических процессов трёхфазной системы.

Как же работает асинхронный трёхфазный двигатель в бытовой стиральной машине, которая подключена к однофазной сети с переменным напряжением 220 вольт?

Данный преобразователь имеет ярко выраженное звено постоянного тока. Переменное напряжение сети преобразуется при помощи диодного моста в постоянное, сглаживается индуктивностью (L) и ёмкостью (C), термистор (NTC) служит для защиты схемы от токовых перегрузок. Индуктивность и ёмкость в выпрямителе служат также фильтром, который защищает сеть от пульсаций при коммутации двигателя.

От переменной сети так же работает импульсный блок питания, который формирует пониженное постоянное напряжение различных значений для питания системы управления. С выхода выпрямителя постоянное напряжение поступает на силовую часть инвертора построенную на IGBT ( Insulated Gate Bipolar Transistor — биполярный транзистор с изолированным затвором ). На структурной схеме IGBT позиционированы как Q1, Q2, Q3, Q4, Q5, Q6. В корпус данных транзисторов интегрирован диод включённый между цепью эмиттера и коллектора, который защищает транзистор от излишних токовых перегрузок возникающих при коммутации обмоток электродвигателя.

В инверторе осуществляется преобрaзовaние постоянного нaпряжения в трехфaзное (или однофaзное) импульсное нaпряжение изменяемой aмплитуды и чaстоты. По сигнaлaм системы упрaвления, кaждaя обмоткa электрического двигaтеля подсоединяется через соответствующие силовые трaнзисторы инверторa к положительному и отрицaтельному полюсaм звенa постоянного токa. Сигналы управления поступают на затворы транзисторов с драйверов (микросхем управления) IR1, IR2, IR3.

Сигнал на драйверы приходит с цифрового сигнального процессора ( DSP-Digital signal processor ) системы управления. Такие процессоры специально разработаны для управления двигателями. Длительность подключения кaждой обмотки в пределaх периодa следовaния импульсов модулируется по синусоидaльному зaкону. Чем выше частота преключения транзисторов, тем выше скорость вращения ротора трёхфазного двигателя, поэтому этот метод управления двигателя называют частотным.

Реверсивное вращение двигателя осуществляется за счёт изменения порядка включения транзисторов инвертора.

Алгоритм системы управления двигателем заложен в цифровом сигнальном процессоре.

Тахогенератор (Т) (Рис.4) расположенный на валу двигателя является звеном обратной связи между двигателем и блоком управления, благодаря чему, поддерживается необходимая стабильная скорость вращения двигателя на различных этапах работы стиральной машины. По сигналу с тахогенератора определятся дисбаланс барабана на стадии отжима, а в некоторых моделях стиральных машин происходит даже примерное взвешивание белья, за счёт сравнения характера сигналов тахогенератора при пустом и заполненным бельём барабане.

Подобные критерии сигналов тахогенератора, записаны в программе процессора системы управления двигателем или в микросхеме памяти блока управления.

В качестве дополнения, ко всему описанному в этом пункте, представим внешний вид и расположение некоторых компонентов инверторных блоков управления для стиральных машин.

Существует три основных вида:

1.Единый блок управления (инвертор и управление остальными элементами стиральной машины совмещены в общий модуль) (Фото 1)

2.Отдельный блок для управления 3-х фазным двигателем (Фото 2)

3.Блок управления (инвертор) расположен на самом двигателе

Фото 1. Единый блок управления стиральной машины Ariston

Фото 2. Отдельный блок для управления 3-х фазным двигателем

4.Диагностика трёхфазных асинхронных двигателей.

Сразу хочется отметить, что трёхфазные асинхронные двигатели стиральных машин довольно надёжные. В практике ремонта стиральных машин, известно крайне мало случаев выхода из строя подобных двигателей.

Большая часть неисправностей связанная с некорректной работой двигателей, заключается в неисправности самой системы управления. При неисправности системы управления, двигатель может вращаться рывками или наблюдается нестабильная частота вращения ротора, а иногда он вовсе не вращается.

Блок управления трёхфазным двигателем может быть выполнен в виде отдельного модуля или совмещён с общим модулем управления стиральной машины.

На (рис.4) приведена лишь структурная схема инверторного преобразователя, на самом деле принципиальная схема инвертора намного сложнее и содержит в себе микропроцессорную систему, операционные усилители, оптические развязки и т.п.

Невозможно полноценно проверить работоспособность или напрямую включить трёхфазной двигатель стиральной машины без подключения к электронной схеме.

При помощи мультиметра представляется возможным проверить лишь целостность цепи обмоток статора двигателя, пробой обмоток на корпус, электрическое сопротивление катушки тахогенератора и тепловое защитное устройство.

5. Преимущество и недостатки трёхфазных двигателей в стиральных машинах

К преимуществу трёхфазных двигателей перед коллекторными и однофазными асинхронными двигателями можно отнести низкий уровень шума и высокий КПД двигателя, а также простоту конструкции и большой эксплуатационный ресурс. Благодаря импульсно-частотной электронной схеме управления достигается широкий диапазон и точность регулирования частоты вращения ротора двигателя. При сравнительно небольших габаритах обладает большой мощностью.

К недостаткам стоит отнести лишь сложную электронную систему управления двигателем.

Источник

Трехфазный асинхронный двигатель

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Конструкция асинхронного электродвигателя

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

,

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Влияние вращающегося магнитного поля на замкнутый проводник с током

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2 Трехфазный ток (разница фаз 120°)

Звезда и треугольник

Трехфазная обмотка статора электродвигателя соединяется по схеме «звезда» или «треугольник» в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

S = 1,73∙380∙1 = 658 Вт.

Теперь изменим схему соединения на «треугольник», линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы «треугольник» будет в три раза больше линейного тока схемы «звезда». А следовательно и потребляемая мощность будет в 3 раза больше:

S = 1,73∙380∙3 = 1975 Вт.

Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме «звезда», подключение данного электродвигателя по схеме «треугольник» может привести к его поломке.

Если в нормальном режиме электродвигатель подключен по схеме «треугольник», то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.

Подключение электродвигателя по схеме звезда и треугольник

Обозначение выводов статора трехфазного электродвигателя

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза U1 U2
вторая фаза V1 V2
третья фаза W1 W2
Соединение в звезду (число выводов 3 или 4)
первая фаза U
вторая фаза V
третья фаза W
точка звезды (нулевая точка) N
Соединение в треугольник (число выводов 3)
первый вывод U
второй вывод V
третий вывод W
Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза C1 C4
вторая фаза C2 C5
третья фаза C3 C6
Соединение звездой (число выводов 3 или 4)
первая фаза C1
вторая фаза C2
третья фаза C3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод C1
второй вывод C2
третий вывод C3

Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента

Трехфазные асинхронные электродвигатели могут быть подключены к однофазной сети с помощью фазосдвигаюших элементов. При этом электродвигатель будет работать либо в режиме однофазного двигателя с пусковой обмоткой (рисунок а, б, г) либо в режиме конденсаторного двигателя с постоянно включенным рабочим конденсатором (рисунок в, д, е).

Схемы подключения трехфазного асинхронного электродвигателя к однофазной сети

Схемы приведенные на рисунке «а», «б», «д» применяются, когда выведены все шесть концов обмотки. Электродвигатели с соединением обмоток согласно схемам «а», «б», «г» практически равноценны двигателям, которые спроектированы как однофазные электродвигатели с пусковой обмоткой. Номинальная мощность при этом состовляет 40-50% от мощности в трехфазном режиме, а при работе с рабочим конденсатором 75-80%.

Емкость рабочего конденсатора при частоте тока 50 Гц для схем «в», «д», «е» примерно рассчитывается соответственно по формулам:

Управление асинхронным двигателем

Прямое подключение к сети питания

Использование магнитных пускателей позволяет управлять асинхронными электродвигателями путем непосредственного подключения двигателя к сети переменного тока.

С помощью магнитных пускателей можно реализовать схему:

Использование теплового реле позволяет осуществить защиту электродвигателя от величин тока намного превышающих номинальное значение.

Нереверсивная схема

Реверсивная схема

Недостатком прямой коммутации обмоток асинхронного электродвигателя с сетью является наличие больших пусковых токов, во время запуска электродвигателя.

Плавный пуск асинхронного электродвигателя

В задачах, где не требуется регулировка скорости электродвигателя во время работы для уменьшения пусковых токов используется устройство плавного пуска.

Устройство плавного пуска защищает асинхронный электродвигатель от повреждений вызванных резким увеличением потребляемой энергии во время пуска путем ограничения пусковых токов. Устройство плавного пуска позволяет обеспечить плавный разгон и торможение асинхронного электродвигателя.

Устройство плавного пуска дешевле и компактнее частотного преобразователе. Применяется там, где регулировка скорости вращения и момента требуется только при запуске.

Частотное управление асинхронным электродвигателем

Для регулирования скорости вращения и момента асинхронного двигателя используют частотный преобразователь. Принцип действия частотного преобразователя основан на изменении частоты и напряжения переменного тока.

Скалярное управление асинхронным двигателем с датчиком скорости

Векторное управление используется в задачах, где требуется независимо управлять скоростью и моментом электродвигателя (например, лифт), что, в частности, позволяет поддерживать постоянную скорость вращения при изменяющемся моменте нагрузки. При этом векторное управление является самым эффективным управлением с точки зрения КПД и увеличения времени работы электродвигателя.

Среди векторных методов управления асинхронными электродвигателями наиболее широкое применение получили: полеориентированное управление и прямое управление моментом.

Полеориентированное управления асинхронным электродвигателем по датчику положения ротора

Полеориентированное управление позволяет плавно и точно управлять параметрами движения (скоростью и моментом), но при этом для его реализации требуется информация о направлениии вектора потокосцепления ротора двигателя.

Прямое управление моментом имеет простую схему и высокую динамику работы, но при этом высокие пульсации момента и тока.

Трехфазный асинхронный двигатель с фазным ротором

До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

Конструкция АДФР

Фазный ротор

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

Фазный ротор

Статор АДФР

Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.

Обозначение выводов вторичных обмоток трехфазного АДФР

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза K1 K2
вторая фаза L1 L2
третья фаза M1 M2
Соединение в звезду (число выводов 3 или 4)
первая фаза K
вторая фаза L
третья фаза M
точка звезды (нулевая точка) Q
Соединение в треугольник (число выводов 3)
первый вывод K
второй вывод L
третий вывод M
Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Соединение звездой (число выводов 3 или 4)
первая фаза Р1
вторая фаза Р2
третья фаза Р3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод Р1
второй вывод Р2
третий вывод Р3

Пуск АДФР

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.

Применяются проволочные и жидкостные реостаты.

Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.

Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов [3].

Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.

При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.

Источник

Читайте также:  Проблемы двигателя умз 4216