Оси в дизельном двигателе

Конструкция основных узлов дизельных двигателей

Современный дизельный двигатель представляет собой сложный агрегат, состоящий из ряда отдельных механизмов, систем и устройств. Конструкция дизельного двигателя зависит от его назначения, мощности, области применения и т.д. В любом двигателе можно выделить следующие основные узлы: остов, кривошипно-шатунный механизм, механизм газораспределения и продувочные и наддувочные устройства (рис. 23).

Остов двигателя поддерживает и направляет движущиеся детали, воспринимает все усилия при работе двигателя; представляет собой совокупность неподвижных деталей двигателя – фундаментной рамы, картера, цилиндров, крышек цилиндров, анкерных связей, шпилек и болтов, стягивающих эти детали.

Фундаментная рама является основанием остова, предназначена для укладки коленчатого вала и служит емкостью для сбора масла, вытекающего из узлов смазывания двигателя. Рама нагружена массой двигателя, силами давления газов, силами инерции поступательного движения и вращающихся масс; Если двигатель оборудован навешенными механизмами (водяными, масляными, топливоподкачивающими насосами), то они монтируются на переднем конце рамы; Рамовые подшипники являются опорой для шеек коленчатого вала;

Картер служит для соединения цилиндров с фундаментной рамой, образует закрытое пространство для размещения кривошипно-шатунного механизма (КШМ). Детали картера подвергаются растяжению от действия максимальной силы давления газов и сжатию усилием предварительной затяжки, а также изгибающим усилиям в крейцкопфных двигателях;

Рабочие цилиндры – это часть двигателя, где осуществляется рабочий цикл. Цилиндр состоит из рубашки и вставной втулки. Во втулке движется поршень и протекают рабочие процессы. Рубашка является опорой для втулки и образует полости для ее охлаждения. Цилиндры устанавливают на верхнюю обработанную плоскость станины или картера и закрепляют шпильками или анкерными связями.

Крышка рабочего цилиндра закрывает и уплотняет рабочий цилиндр и образует вместе с поршнем и втулкой камеру сгорания; на крышку действуют усилия от затяжки крышечных шпилек и переменного давления газов, а также высокая тепловая нагрузка; крышки двухтактных дизелей имеют более простую конструкцию из-за отсутствия клапанов;

Кривошипно-шатунный механизм воспринимает усилие от давления газов и преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Основными деталями КШМ в крейцкопфных двигателях являются поршень, шток поршня, крейцкопф, шатун, коленчатый вал; в тронковых двигателях – поршень, поршневой палец, шатун, коленчатый вал.

Поршень воспринимает силу давления газов и передает ее через шатун на коленчатый вал. В тронковых двигателях он выполняет роль ползуна, управляет газообменом в двухтактных дизелях; днище поршня воспринимает давление и теплоту горячих газов, ограничивает и формирует камеру сгорания. Форма днища поршня зависит от примененного способа смесеобразования, расположения камеры сгорания и типа продувки. Поршень уплотняется в цилиндре поршневыми кольцами – компрессионными и маслосъемными. Компрессионные кольца уплотняют рабочий зазор, отводят теплоту от поршня к стенкам цилиндра, маслосъемные кольца регулируют количество масла, удаляя его излишки с зеркала цилиндра;

Шатун соединяет поршень или поперечину крейцкопфа с коленчатым валом, обеспечивает перемещение поршня при совершении вспомогательных ходов; шатун подвергается действию силы от давления газов, сил инерции поступательно движущихся масс и сил инерции, возникающих при качании шатуна;

Группа коленчатого вала – сюда входят следующие узлы двигателя: коленчатый вал, противовесы, распределительная шестерня или звездочка, шестерни привода навешенных вспомогательных механизмов, узел осевой фиксации, демпфер, маховик. Коленчатый вал относится к числу наиболее ответственных, напряженных и дорогостоящих деталей. При работе двигателя вал нагружается силами давления газов, силами инерции движущихся возвратно-поступательно и вращающихся деталей. Для уравновешивания центробежных сил коленчатые валы снабжаются противовесами. Если вспомогательные механизмы, обеспечивающие работу дизеля, приводятся во вращение от коленчатого вала самого двигателя, то раздача мощности на механизмы производится от коробки приводов. Отбор мощности производится на механизмы газораспределения, топливные, масляные насосы и насосы системы охлаждения. Для обеспечения равномерности вращения коленчатого вала двигателя применяются маховики.

Механизм газораспределения открывает и закрывает впускные и выпускные органы в соответствии с принятыми фазами газообмена. Механизм газораспределения состоит из рабочих клапанов и деталей, передающих им движение от коленчатого вала двигателя – шестерен, распределительных валов, толкателей, штанг, рычагов. Конструкция механизма газораспределения зависит от конструкции самого дизельного двигателя. Как правило, применяются следующие типы газораспределения: клапанное, золотниковое и комбинированное.

Клапанное газораспределение применяется в четырехтактных дизелях всех типов и в качестве привода выпускных клапанов в двухтактных дизелях при клапанно-щелевой схеме газообмена (рис. 24).

Привод верхних клапанов может осуществляться непосредственно от распределительного вала или через промежуточные детали в виде толкателей, штанг, коромысел, рычагов, траверс. Расположение распределительного вала при этом может быть как верхним над крышкой блока цилиндров (рис. 24.а – г), так и нижним – вдоль блока цилиндров (рис. 24.д). Верхние клапаны дают возможность получить компактную камеру сгорания цилиндрической, конической или сферической формы, благоприятной для смесеобразования и сгорания топлива. Верхнее расположение клапанов типично для различного рода дизельных двигателей. При нижнем расположении клапанов (рис. 24.е) упрощается устройство головки цилиндров и механизма привода клапанов, уменьшается число деталей механизма газораспределения и высота самого двигателя. При этом клапаны могут располагаться как с одной, так и с обеих сторон блока цилиндров.

Золотниковое (бесклапанное) газораспределение осуществляется поступательно движущимися или вращающимися золотниками, а также золотниками, совершающими одновременно поступательное и угловое перемещения. При золотниковом газораспределении можно обеспечить большие проходные сечения для газов и бесшумную работу двигателя. В двухтактных дизелях в роли золотниковой пары выступает сам поршень и окна во втулках цилиндра.

К продувочным и наддувочным устройствам для зарядки цилиндров двигателя относятся: продувочные насосы (в двухтактных дизелях), наддувочные агрегаты, детали приводов, ресиверы продувочного и наддувочного воздуха, охладители воздуха, воздушные фильтры.

Литература

Судовые энергетические установки. Дизельные и газотурбинные установки. Болдырев О.Н. [2003]

Источник

Дизельный двигатель: устройство, принцип работы

Вторым по популярности двигателей внутреннего сгорания является дизельный двигатель, который раньше устанавливался только на грузовые машины. КПД дизеля больше, чем у самого распространенного ДВС — бензинового. При более высоком коэффициенте полезного действия, дизель расходует топлива намного меньше. Такие преимущества инженеры-конструкторы автомобильной промышленности смогли сделать за счет уникальной конструкции.

История создания дизельного двигателя

Двигатели внутреннего сгорания бензинового типа постоянно модифицируются. Конструкторы добиваются улучшения эксплуатационных технических характеристик. Даже с новым прямым впрыском бензиновый ДВС выдает 30% КПД, а дизельный ДВС без турбонаддвува выдает 40% КПД, с турбонаддувом — около 50%.

Поэтому дизельные моторы становятся все более популярными и в Европе, и, вообще, по миру. Бензин дорожает чаще, чем дизтопливо. Все больше людей перед покупкой автомобиля оценивают, какой расход у этого авто. Основной существенный минус дизельных моторов — это большие габариты и большой вес. Поэтому они устанавливались только на грузовики.

Изготовление и обслуживание диз двигателя сложнее, потому что конструкция должна быть такой, чтобы все детали были сделаны с высокой точностью.

История создания

Дизельный двигатель, он же дизель — это поршневой двигатель внутреннего сгорания, принцип работы которого основан на самовоспламенении топлива, распыляющегося сжатым и горячим воздухом. До конца 20 века такой тип ДВС устанавливался на корабли, тепловозы, автобусы, грузовые машины, трактора. С конца 20 века после успешных испытаний начал массово устанавливаться на легковые авто.

По информации из википедии, в 1824 году Сади Карно придумал и сформулировал идею цикла Карно, суть которого заключалось возможности доводить топливо до температуры самовоспламенения резким сжатием.

Спустя 66 лет, Рудольф Дизель в 1890 году предложил реализовать эту идею на практике. 23 февраля 1892 года получил патент (разрешение) на свой двигатель, а в на следующий год выпустил брошюру по своего агрегату. Он запатентовал несколько вариантов.

Успешное испытание дизель-мотора удалось сделать только 28 января 1987 года (до этого попытки были неудачными). После этого Р.Дизель начал продавать лицензии на свое изобретение.Хоть и КПД, и удобство использования нового двигателя было на высоко уровне по сравнению с паровыми агрегатами, новые дизель-устройства были большими по габаритам и тяжелыми (они были больше и тяжелее паровых машин тех времен).

Первоначальной задумкой было то, что топливом должна была быть каменноугольная пыль. Но после испытаний такого вида топлива, оказалось, что каменноугольная пыль очень быстро изнашивает детали двигателя из-за своих абразивных свойств и из-за золы, которая получалась в результате сгорания этой пыли.

Далее, в качестве топлива было использовалось растительное масло и легкие нефтепродукты. Именно на этих видах топлива, испытания ДВС Дизеля прошли успешно.

Инженер Экрой Стюард построил в 1896 году работающий двигатель — полудизель. В этой варианте конструкции ДВС было решено, чтобы воздух втягивался в цилиндр, после чего сжимался поршнем и нагнетался в конце такта сжатия в емкость, в которую распылялось топливо. Чтобы запустить такой мотор, емкость нагревалась лампой снаружи и после запуска двигатель работал сам. Экрой Стюард экспериментировал со сжатием топлива и воздуха в цилиндре. Он хотел исключить свечи зажигания.

Русские в изобретениях не отставали. Вне зависимости от успехов создания ДВС Дизелем, в 1989 году в Петербурге на Путиловском заводе инженер Густав Тринклер придумал и создал первый в мире бескомпрессорный нефтяной двигатель высокого давления, то есть это был двигатель с форкамерой (форкамера — это предварительная камера сгорания, которая по объему составляет 30% от общего объема камеры сгорания). Такой двигатель получил название «Тринклер-мотор».

Читайте также:  Ремонт кузова автомобиля дыры

После сравнения немецкого варианта Дизель-мотора и русского Тринклер-мотора, русский вариант оказался более эффективным. В Тринклер-моторе использовалась гидросистема для нагнетания и распыления топлива — это позволило отказаться от установки дополнительного воздушного компрессора и позволило увеличить число оборотов вала двигателя. В русском варианте в конструкции двигателя не устанавливался воздушный компрессор. Тепло подводилось медленно и дольше, по сравнению с немецким мотором Рудольфа Дизеля. Тринклер-мотор был проще и эффективнее. Но, теми, у кого были лицензии на Дизель-двигатели Рудольфа и Нобелями были вставлены «палки в колеса», чтобы остановить распространение конкурентного варианта мотора. В 1902 году работы по созданию Тринклер-мотора были остановлены.

В 1989 году Эммануил Нобель получил лицензию на двигатель Рудольфа Дизеля. Двигатель был доработан и теперь он мог работать на нефти, а не на керосине. В 1899 году Механический завод «Людвиг Нобель», расположенный в Петербурге, начал массовый выпуск таких моторов. В 1900 году в Париже на Всемирной выставке дизельный ДВС получил ГРАН-ПРИ. Перед Всемирной выставкой в Париже, появилась новость, что Нобелевский завод в Петербурге выпускает ДВС, которые работают на сырой нефти. Такой ДВС в Европе начали называть «Русский дизель». Русский инженер по фамилии Аршаулов первым сконструировал и внедрил в систему топливный насос высокого давления (ТНВД). Приводом для ТНВД служил сжимаемый поршнем воздух. ТНВД работал с бескомпрессроной форсункой.

В 20-е годы ХХ века, Роберт Бош доработал встроенный ТНВД. Это устройство используется и в наши дни. Бош также усовершенствовал бескомпрессорную форсунку.

С 50-60 годов 20 века дизельный моторы успешно устанавливаются на грузовые машины и автофургоны.

С 70-х годов из-за удорожания бензинового топлива, на дизельные моторы стали обращать внимание производители легковых автомобилей.

В настоящее время, почти каждая марка авто имеет модификацию с дизельным аппаратом под своим капотом.

Устройство системы дизельного двигателя

Основными элементами диз мотора являются:

Современный дизельный двигатель в разрезе

Принцип работы дизельного мотора

Основная особенность дизельного ДВС в том, что он воспламенение топливно-воздушной смеси в камерах сгорания происходит за счет сжатия и нагрева. Распыление диз топлива осуществляется через форсунки.

Подача солярки осуществляется только в момент, при котором воздух максимально сжат и имеет максимальную температуру.

Когда воздух горячий, дизельное топливо легко воспламеняется. Перед попаданием топлива в камеры сгорания цилиндров ДВС, оно проходит очищающие фильтры, которые очищают от механических примесей, которые быстро нанесли бы ущерб всему устройству.

Порядок работы дизельной системы:

Дополнительные компоненты двигателя

Помимо основных деталей, которые обязательно присутствуют в конструкции двигателя, есть еще дополнительные детали и узлы, которые улучшают характеристики и работу ДВС.

Принцип работы турбины

Турбина — это устройство, которое создает дополнительного нагнетание топлива. Двигатель с турбиной имеет большую производительность.

Идея создания турбины появилась при обнаружении такого факта, что при движении поршня вверх, солярка не успевает полностью сгорать.

С помощью турбины, сгорание топлива в цилиндрах происходит до конца, за счет чего уменьшается расход топлива и увеличивается мощность ДВС.

Турбонаддув, он же турбонагнетатель состоит из:

Цикл работы турбонаддува:

Цикл далее повторяется.

При охлаждении воздуха, его плотность увеличивается. Если плотность воздуха стала больше, значит можно закачать воздух большим объемом. Чем больший поток воздуха подается в камеру сгорания, тем лучше сгорает топливо.

Интеркулер и форсунка

При сжатии плотность воздуха и температура увеличиваются. Это негативно сказывается на межремонтном периоде деталей двигателя. В связи с чем была разработано устройство, которое охлаждает горячий воздушный поток.

В зависимости от модификации дизельных двигателей, в цилиндре топливо может распыляться одной или двумя форсунками.

Форсунки дизеля работают в импульсном режиме.

Вывод

За счет постоянных инженерных внедрений и испытаний, современные дизельные двигатели выдают очень хорошие технические характеристики. Качество сгорания отличное за счет использования турбонагнетателя. Качество сгорания, примерно, выше в 2 раза, чем у бензинового двигателя.

В последние годы идет постоянное усовершенствование не только для улучшения эксплуатационных показателей, но и за счет современных требований мировых экологов. Сначала было требование двигатели Евро-2, потом 3, 4, 5.

Видео

В этом видео показывается принцип работы дизеля.

Строение системы дизельного двигателя.

Принцип работы турбонагнетателя (турбонаддува, турбины).

Отличия ДВС евро 5 от евро 4.

Источник

Оси в дизельном двигателе

Чем больше количество цилиндров, тем меньше интервал между воспламенениями. Чем меньше интервал между воспламенениями, тем равномернее работает двигатель.
По крайней мере, теоретически, т. к. к этому еще добавляется уравновешивание масс, которое зависит от конструкции двигателя и порядка работы цилиндров. Для того чтобы в цилиндре могло произойти воспламенение, соответствующий поршень должен находиться в „ВМТ конца такта сжатия», т. е. должны быть закрыты соответствующие впускной и выпускной клапаны. Это может иметь место, только когда коленчатый вал и распределительный вал правильно расположены относительно друг друга. Интервал между воспламенениями определяется взаимным расположением шатунных шеек (угловым расстоянием между коленами) коленчатого вала, т. е. углом между шейками следующих друг за другом цилиндров (порядок работы цилиндров). В V-образных двигателях угол развала должен быть равен интервалу между воспламенениями для достижения равномерной работы.
Поэтому восьмицилиндровые двигатели BMW имеют угол между рядами цилиндров 90°.

Уравновешивание масс
Как описано ранее, плавность работы двигателя зависит от конструкции двигателя, количества цилиндров, порядка работы цилиндров и интервала между воспламенениями.
Их влияние можно показать на примере шести цилиндрового двигателя, который BMW изготавливает в виде рядного двигателя, хотя он занимает больше места и более трудоемок в изготовлении. Разницу можно понять, если сравнить уравновешивание масс рядного и V-образного шестицилиндровых двигателей.
На следующем рисунке показаны кривые момента инерции рядного шестицилин-дрового двигателя BMW, V-образного шестицилиндрового двигателя с углом между рядами 60° и V-образного шестицилиндрового двигателя с углом 90°.
Разница очевидна. В случае рядного шестицилиндрового двигателя движения масс уравновешиваются настолько, что весь двигатель практически неподвижен. V-образные шестицилиндровые двигатели, напротив, имеют явную тенденцию к движению, что проявляется в неравномерной работе.

Корпусные детали
Корпусные детали двигателя берут на себя изоляцию от окружающей среды и воспринимают различные силы, которые возникают в процессе работы двигателя.

Корпусные детали двигателя состоят из показанных на следующем рисунке основных деталей. Для выполнения картером своих задач необходимы также уплотнительные прокладки и болты.

Кривошипно-шатунныи механизм
Кривошипно-шатунныи механизм отвечает за преобразование возникающего при сгорании топливо-воздушной смеси давления в полезное движение. При этом поршень получает прямолинейное ускорение. Шатун передает это движение на коленчатый вал, который превращает его во вращательное движение.

Кривошипно-шатунный механизм является функциональной группой, которая преобразует давление в камере сгорания в кинетическую энергию. При этом возвратно-поступательное движение поршня переходит во вращательное движение коленчатого вала. Кривошипно-шатунныи механизм является оптимальным решением в части выхода работы, коэффициента полезного действия и технической реализуемости.

Привод клапанов
Привод клапанов управляет сменой заряда. В современных дизельных двигателях BMW находит применение исключительно привод клапанов done с четырьмя клапанами на цилиндр. Передача движения на клапан осуществляется через рычаг толкателя.

В двигатель должен периодически подаваться наружный воздух, в то время как отработавший газ, который он производит, должен отводиться. В случае четырехтактного двигателя всасывание наружного воздуха и выпуск отработавшего газа называют сменой заряда или газообменом. В процессе смены заряда впускные и выпускные каналы периодически открываются и закрываются с помощью впускных и выпускных клапанов.
В качестве впускных и выпускных клапанов используются подъемные клапаны. Продолжительность и последовательность движений клапанов обеспечиваются распределительным валом.

На следующем рисунке показана конструкция головки блока цилиндров с четырьмя клапанами (двигатель М47) с роликовыми рычагами толкателей и гидравлической системой компенсации клапанного зазора.

Конструкция двигателя количество цилиндров Смещение шеек КВ Угол развала Интервал между воспламенениями Порядок работы цилиндров
4-цилиндровый рядный двигатель
sv Side Valves Клапаны находятся сбоку цилиндра и приводятся в движение расположенным снизу распределительным валом. Боковой клапан означает, что клапанная головка расположена сверху.
ohv Overhead Valves Верхнее расположение клапанов с нижним расположением распределительного вала. Расположенные снизу распределительные валы устанавливаются ниже линии раздела головки блока цилиндров и блок-картера.
ohc Overhead Camshaft Верхнее расположение клапанов с верхним расположением двух распределительных валов для каждого ряда цилиндров. В этом случае используется по одному отдельному распределительному валу для впускных и выпускных клапанов.
done Double Overhead Camshaft Верхнее расположение клапанов с верхним расположением двух распределительных валов для каждого ряда цилиндров. В этом случае используется по одному отдельному распределительному валу для впускных и выпускных клапанов.

Дизельные двигатели BMW сегодня имеют исключительно по четыре клапана на цилиндр и по два расположенных сверху распределительных вала для каждого ряда цилиндров (dohc). Двигатели BMW M21 / М41 / М51 имели только по два клапана на цилиндр и по одному распределительному валу для каждого ряда цилиндров (ohc).
Передача движения кулачков распределительного вала на клапаны в дизельных двигателях BMW осуществляется роликовыми рычагами толкателей. При этом нужный зазор между кулачком распределительного вала и так называемым повторителем кулачка (например, роликовым рычагом толкателя) обеспечивается благодаря механической или гидравлической системе компенсации клапанного зазора (HVA).
На следующем рисунке показаны детали привода клапанов двигателя М57.

Блок-картер, называемый также блоком цилиндров, включает цилиндры, рубашку охлаждения и картер приводного механизма. Требования и задачи, которые предъявляются к блок-картеру, высоки вследствие сложности сегодняшних двигателей „Hightech». Однако, совершенствование блок-картера происходит в том же темпе, тем более, что многие новые или усовершенствованные системы взаимодействуют с блок-картером.

Конструкция
Основная форма блок-картера не слишком сильно изменилась с начала моторо-сторения. Изменения в конструкции коснулись частностей, например, из какого количества деталей изготавливается блок-картер или как выполняются отдельные его части. Конструкции можно классифицировать в зависимости от исполнения:

Верхняя плита
Верхняя плита может быть выполнена в двух различных конструктивных исполнениях: закрытое и открытое. Конструктивное исполнение влияет как на процесс литья, так и на жесткость блок-картера.
При закрытом исполнении верхняя плита блок-картера полностью закрыта вокруг цилиндра.
Имеются отверстия и каналы для подачи масла под давлением, стока масла, охлаждающей жидкости, вентиляции картера и резьбовых соединений головки блока цилиндров.
Отверстия для охлаждающей жидкости соединяют водяную рубашку, которая окружает цилиндр, с водяной рубашкой в головке блока цилиндров.
Такая конструкция имеет недостатки в части охлаждения цилиндров в зоне ВМТ. Преимуществом закрытого исполнения по сравнению с открытым является более высокая жесткость верхней плиты и, тем самым, меньшая деформация плиты, меньшее смещение цилиндров и лучшая акустика.
При открытом исполнении водяная рубашка, окружающая цилиндр, открыта в верхней части. Это улучшает охлаждение цилиндров в верхней части. Меньшая жесткость в настоящее время компенсируется применением металлической прокладки головки блока.

В дизельных двигателях BMW используется закрытое исполнение плиты. Область постели коренного подшипника
Исполнение области постели коренного подшипника имеет особое значение, т. к. в этом месте воспринимаются силы, действующие на подшипник коленчатого вала.
Исполнения отличаются плоскостью разъема блок-картера и масляного поддона и конструкцией крышек коренных подшипников.
Исполнения плоскости разъема:

Плоскость разъема картера

Плоскость разъема блок-картера и масляного поддона образует фланец масляного поддона. Различают два конструктивных исполнения. В первом случае плоскость разъема лежит по центру коленчатого вала. Т. к. это конструктивное исполнение экономично при изготовлении, но обладает значительными недостатками по части жесткости и акустики, оно не используется в дизельных двигателях BMW.
При втором конструктивном исполнении (В) фланец масляного поддона располагается ниже центра коленчатого вала. При этом различают блок-картер с опущенными стенками и блок-картер
с верхней и нижней частями, последняя называется конструкцией с bedplate (С). Дизельные двигатели BMW имеют блок-картер с опущенными стенками.

В двигателе М67 также используется конструкция с опущенными стенками. Это обеспечивает высокую динамическую жесткость и хорошую акустику. Перемычка из стали уменьшает нагрузку на болты крепления крышки подшипника и дополнительно усиливает область постели коренного подшипника.

Концепция поддерживающей балки
Для достижения высокой динамической жесткости блок-картеры дизельных двигателей BMW сконструированы по принципу поддерживающей балки. При такой конструкции в стенках блок-картера отливаются горизонтальные и вертикальные элементы коробчатого сечения. Кроме того, блок-картер имеет опущенные стенки, которые доходят до 60 мм ниже центра коленчатого вала и заканчиваются плоскостью для установки масляного поддона.

Крышка коренного подшипника
Крышки коренных подшипников являются нижней частью опор коленгчатого вала. При изготовлении блок-картера постели и крышки коренных подшипников обрабатываются вместе. Поэтому необходимо их фиксированное положение относительно друг друга. Обычно это осуществляется с помощью центрирующих втулок или сделанных по бокам в постелях поверхностей. Если блок-картер и крышки коренных подшипников сделаны из одного материала, крышки могут быть изготовлены по методу разлома.
При отделении крышки коренного подшипника методом разлома образуется точная поверхность разлома. Такая структура поверхности точно центрирует крышку коренного подшипника при установке на постель. Дополнительная обработка поверхности не требуется.

Другой возможностью точного позиционирования является выштамповка поверхностей постели и крышки коренного подшипника.
Такая фиксация обеспечивает абсолютно гладкий переход между постелью и крышкой в отверстии для коренного подшипника после повторной сборки.

При выштамповке поверхности крышка коренного подшипника получает определенный профиль. При первой затяжке болтов крепления крышки коренного подшипника этот профиль отпечатывается на поверхности постели и обеспечивает отсутствие перемещений в поперечном и продольном направлениях.
Крышки коренных подшипников почти всегда изготавливаются из серого чугуна. Общая обработка с алюминиевым блок-картером, хотя и предъявляет особые требования, является сегодня обычной для крупносерийного производства. Комбинация алюминиевого блок-картера с крышками коренных подшипников из серого чугуна дает определенные преимущества. Низкий коэффициент теплового расширения серого чугуна ограничивает рабочие зазоры коленчатого вала. Наряду с высокой жесткостью серого чугуна это приводит к снижению шума в области постели коренного подшипника.

Монометаллическая конструкция
При монометаллической конструкции цилиндр изготавливается из того же материала, что и блок-картер. Прежде всего, по принципу монометаллической конструкции изготавливаются блок-картер из серого чугуна и AISi-блок-картер. Необходимое качество поверхности достигается путем многократной обработки. Дизельные двигатели BMW имеют блок-картеры монометаллической конструкции только из серого чугуна, т. к. максимальное давление при воспламенении достигает 180 бар.

Технология вставки
Не всегда материал блок-картера удовлетворяет требованиям, предъявляемым к цилиндру. Поэтому часто цилиндр изготавливается из другого материала, обычно в комбинации с алюминиевым блок-картером. Гильзы цилиндров различают:

Мокрые гильзы цилиндров имеют преимущество в части передачи тепла, в то время, как преимущество сухих гильз в производстве и возможности обработки. Как правило, затраты на производство гильз цилиндров снижаются при большом количестве. Гильзы из серого чугуна для обоих двигателей M57TU2 и M67TU проходят термическую обработку.

Даже сейчас блок-картер является одной из самых тяжелых деталей всего автомобиля. И занимает самое критичное место для динамики движения: место над передней осью. Поэтому именно здесь делаются попытки полностью использовать потенциал для уменьшения массы. Серый чугун, который в течение десятилетий использовался в качестве материала для блок-картера, все больше и больше заменяется в дизельных двигателях BMW алюминиевыми сплавами. Это позволяет получить значительное снижение массы. В двигателе M57TU оно составляет 22 кг.
Но, преимущество в массе не единственное отличие, которое имеет место при обработке и применении другого материала. Изменяется также акустика, антикоррозионные свойства, требования к производству обработке и объемы сервисного обслуживания.

Материал 0,2 % пред. текуч. Н/мм 2 Предел прочности при растяжении Н/мм 2 Плотн.

кН/мм 2

Серый чугун 250-350 7,2-7,7 115-135
Алюминиево-

кремниевыи сплав

140-240 200-310 2,75 74-78

Алюминиевые сплавы
Блок-картеры из алюминиевых сплавов пока еще относительно новы для дизельных двигателей BMW. Первыми представителями нового поколения являются двигатели M57TU2 и M67TU.
Плотность алюминиевых сплавов составляет примерно треть по сравнению с серым чугуном. Однако, это не значит, что преимущество в массе имеет такое же соотношение, т. к. вследствие меньшей прочности такой блок-картер приходится делать массивнее.

Чистый алюминий не пригоден для литья блок-картера, т. к. имеет недостаточно хорошие прочностные свойства. В отличие от серого чугуна основные легирующие компоненты добавляются здесь в относительно больших количествах.

Для алюминиевых блок-картеров дизельных двигателей BMW используются исключительно сплавы AlSi. Они улучшаются небольшими добавками меди или магния.
Кремний оказывает положительное воздействие на прочность сплава. Если составляющая больше 12 %, то специальной обработкой можно получить очень высокую твердость поверхности, хотя резание при этом осложнится. В районе 12 % имеют место выдающиеся литейные свойства.
Добавка меди (2-4 %) может улучшить литейные свойства сплава, если содержание кремния меньше 12 %.
Небольшая добавка магния (0,2-0,5 %) существенно увеличивает значения прочности.
Для обоих дизельных двигателей BMW используется алюминиевый сплав AISi7MgCuO,5. Материал уже использовался BMW для головок цилиндров дизельных двигателей.
Как видно из обозначения AISl7MgCuO,5, этот сплав содержит 7 % кремния и 0,5 % меди.
Он отличается высокой динамической прочностью. Другими положительными свойствами являются хорошие литейные свойства и пластичность. Правда, он не позволяет достичь достаточно износостойкой поверхности, которая необходима для зеркала цилиндра. Поэтому блок-картеры из AISI7MgCuO,5 приходится выполнять с гильзами цилиндров (см. главу „Цилиндры»).

Обзор в виде таблицы

Двигатель Материал
блок-картера
Материал зеркала цилиндра Производство/ конструкция зеркала цилиндра
M21D24 СЧ СЧ Монометалл
M41D17 СЧ СЧ Монометалл
M47D20TU СЧ СЧ Монометалл
M47D20 СЧ СЧ Монометалл
M47D20TU СЧ СЧ Монометалл
M51D25TU СЧ СЧ Монометалл
M57D30 СЧ СЧ Монометалл
M57D30TU СЧ СЧ Монометалл
M57D30TU2 AISi7MgCuO,5 СЧ Сухие гильзы
M67D40 GGV-500 GGV-500 Монометалл
M67D44TU AISi7MgCuO,5 СЧ Сухие гильзы
СЧ = серый чугун, GGV = серый чугун с вермикулярным графитом, AlSi = алюминиево-кремниевый сплав

Головка блока цилиндров с крышкой
В головке блока цилиндров полностью размещаются привод клапанов. К этому добавляются каналы газообмена, охлаждающей жидкости и масляные каналы. Головка блока цилиндров закрывает сверху камеру сгораних и служит, таким образом, крышкой камеры сгорания.

Процессы при впрыске
В дизельных двигателях в зависимости от конструкции и компоновки камеры сгорания различают непосредственный и непрямой впрыск. Причем в случае непрямого впрыска, в свою очередь, различают вихрекамерное и предка-мерное смесеобразование.

Предкамера располагается по центру относительно основной камеры сгорания. В эту предкамеру впрыскивается топливо для предкамерного сгорания. Основное сгорание происходит с известной задержкой самовоспламенения в основной камере. Предкамера соединена с основной камерой несколькими отверстиями.
Топливо впрыскивается с помощью форсунки, обеспечивающей ступенчатое впрыскивание топлива, под давлением около 300 бар. Отражающая поверхность в центре камеры разбивает струю топлива и происходит смешивание с воздухом. Отражающая поверхность способствует таким образом быстрому смесеобразованию и упорядочению движения воздуха.

Недостатком этой технологии является большая поверхность охлаждения предкамеры. Сжатый воздух охлаждается относительно быстро. Поэтому такие двигатели запускаются без помощи свечей накаливания, как правило, только при температуре охлаждающей жидкости не менее 50 °С.
Благодаря двухступенчатому сгоранию (сначала в предкамере, а затем в основной камере), сгорание происходит мягко и почти полностью при относительно ровной работе двигателя. Такой двигатель обеспечивает снижение выброса вредных веществ, но при этом развивает меньшую мощность по сравнению с двигателем с непосредственным впрыском.

Вихрекамерное смесеобразование
Вихрекамерный впрыск, как и предка-мерный, является вариантом непрямого впрыска.
Вихревая камера сконструирована в форме шара и располагается отдельно на краю основной камеры сгорания. Основная камера сгорания и вихревая камера соединены прямым тангенциальным каналом. Тангенциально направленный прямой канал при сжатии создает сильное завихрение воздуха. Дизельное топливо подается через форсунку, обеспечивающую ступенчатое впрыскивание. Давление открытия форсунки, обеспечивающей ступенчатое впрыскивание топлива, составляет 100-150 бар. При впрыске тонко распыленного облака топлива смесь частично воспламеняется и развивает свою полную мощь в основной камере сгорания. Конструкция вихревой камеры, а также расположение форсунки и свечи накаливания являются факторами, определяющими качество сгорания.
Это значит, что сгорание начинается в шарообразной вихревой камере и заканчивается в основной камере сгорания. Для запуска двигателя необходимы свечи накаливания, т. к. между камерой сгорания и вихревой камерой имеется большая поверхность, которая способствует быстрому охлаждению всасываемого воздуха.
Первый серийный дизельный двигатель BMW M21D24 работает по принципу вихрекамерного смесеобразования.

Непосредственный впрыск
Эта технология позволяет отказаться отделения камеры сгорания. Это значит, что при непосредственном впрыске отсутствует подготовка рабочей смеси в соседней камере. Топливо впрыскивается с помощью форсунки прямо в камеру сгорания над поршнем.
В отличие от непрямого впрыска используют многоструйные форсунки. Их струи должны быть оптимизированы и адаптированы к конструкции камеры сгорания. Вследствие большого давления впрыскиваемых струй возникает моментальное сгорание, которое на более ранних моделях приводило к громкой работе двигателя. Однако, подобное сгорание освобождает больше энергии, которую затем можно эффективнее использовать. Расход топлива при этом уменьшается. Непосредственный впрыск требует более высокого давления впрыска и, соответственно, более сложной системы впрыска.
При температуре ниже О °С, как правило, не требуется предпусковой подогрев, т. к. потери тепла через стенки вследствие единой камеры сгорания заметно меньше, чем у двигателей с соседними камерами сгорания.

Конструкция
Конструкция головок блоков цилиндров сильно изменилась в процессе усовершенствования двигателей. Форма головки блока цилиндров сильно зависит от деталей, которые она включает.

Другим требованием к головке блока цилиндров является, повозможности, компактная форма.
Форму головки блока цилиндров прежде всего определяет концепция привода клапанов. Для обеспечения высокой мощности двигателя, низкого выброса вредных веществ и малого расхода топлива необходима, повозможности, эффективная и гибкая смена заряда и высокая степень заполнения цилиндров. В прошлом для оптимизации этих свойств было сделано следующее:

Особая форма впускных и выпускных каналов улучшает также смену заряда. В основном головки блоков цилиндров различают по следующим критериям:

В этом месте следует еще раз упомянуть, что здесь рассматривается только головка блока цилиндров как отдельная деталь. Ввиду ее сложности и сильной зависимости от названных деталей она часто описывается как единая функциональная группа. Другие темы вы найдете в соответствующих главах.

Число деталей
Головка блока цилиндров называется одночастной, когда она состоит только из одной единственной большой отливки. Такие мелкие детали, как крышки подшипников распределительных валов, здесь не рассматриваются. Многочастные головки блоков цилиндров собираются из нескольких отдельных деталей. Частым примером этого являются головки блоков цилиндров с привернутыми опорными планками для распределительных валов. Однако, в дизельных двигателях BMW в настоящее время находят применение только одночастные головки блоков цилиндров.

В вихревом канале поступающий воздух приводится во вращение для хорошего смесеобразования при низких частотах вращения коленвала двигателя.
Через тангенциальный канал воздух может поступать беспрепятственно по прямой в камеру сгорания. Это улучшает наполнение цилиндров, особенно при высоких частотах вращения. Для управления наполнением цилиндров иногда устанавливается вихревой клапан. Он закрывает тангенциальный канал при низких частотах вращения (сильное завихрение) и плавно открывает его при увеличении частоты вращения (хорошее наполнение).
Головка цилиндра в современных дизельных двигателях BMW включает вихревой канал и канал наполнения, а также центрально расположенную форсунку.

При охлаждении поперечным потоком охлаждающая жидкость протекает от горячей стороны выпуска к холодной стороне впуска. Это дает то преимущество, что во всей головке блока цилиндров имеет место равномерное распределение тепла. В противоположность этому при охлаждении продольным потоком охлаждающая жидкость протекает вдоль оси головки блока цилиндров, т. е. от передней стороны к стороне отбора мощности или наоборот. Охлаждающая жидкость нагревается все больше при движении от цилиндра к цилиндру, что означает очень неравномерное распределение тепла. Кроме того, это означает падение давления в охлаждающем контуре.
Комбинация обоих типов не может устранить недостатки охлаждения продольным потоком. Поэтому в дизельных двигателях BMW используется исключительно охлаждение поперечным потоком.

Уплотнительная прокладка головки блока цилиндров
Уплотнительная прокладка головки блока цилиндров (ZKD) в любом двигателе внутреннего сгорания, будь он бензиновый или дизельный, является очень важной деталью. Она подвергается экстремальным термическим и механическим нагрузкам.

Уплотнительные прокладки в основном делятся на мягкие и металлические.

Мягкие уплотнительные прокладки
Уплотнительные прокладки этого типа изготавливаются из мягких материалов, но имеют металлическую рамку или несущую пластину. На этой пластине с двух сторон держатся мягкие накладки. На мягких накладках часто нанесено пластмассовое покрытие. Такая конструкция позволяет выдерживать нагрузки, которым обычно подвергаются уплотнительные прокладки головки блока цилиндров. Отверстия в ZKD, выходящее в камеру сгорания, вследствие нагрузок имеют металлическую окантовку. Для стабилизации проходов охлаждающей жидкости и масла часто используются эластомерные покрытия.

Металлические уплотнительные прокладки
Металлические уплотнительные прокладки находят применение в двигателях, работающих с большими нагрузками. Такие уплотнительные прокладки включают в себя несколько стальных пластин. Основной особенностью металлических прокладок является то, что уплотнение осуществляется в основном за счет находящихся между пластинами из рессорной стали гофрированных пластин и стопоров. Свойства деформации ZKD позволяют ей, во-первых, оптимально лечь в области головки блока цилиндров и, вовторых, в большой степени компенсировать деформацию за счет упругого восстановления. Подобные упругие восстановления имеют место вследствие термических и механических нагрузок.

Толщина необходимой ZKD определяется по выступу днища поршня относительно цилиндра. Решающим является самое большое значение из измеренных на всех цилиндрах. В распоряжении имеется три варианта толщины прокладки головки блока цилиндров.
Разница толщины прокладок определяется толщиной промежуточной прокладки. Подробные данные для определения выступа днища поршня см. TIS.

Масляный поддон служит в качестве сборника для моторного масла. Он изготавливается литьем алюминия под давлением или из двойного стального листа.

В качестве уплотнения устанавливается стальная уплотнительная прокладка. Пробочные уплотнительные прокладки, которые устанавливались в прошлом, имели усадку, что могло приводить к ослаблению резьбового крепления.
Для обеспечения работы стальной прокладки при ее установке не должно попадать масло на резиновые поверхности. При определенных обстоятельствах уплотнительная прокладка может соскользнуть с уплотняемой поверхности. Поэтому поверхности фланца необходимо очищать непосредственно перед установкой. Кроме того, нужно обеспечить, чтобы масло не капало из двигателя и не попало на поверхности фланца и прокладку.

При работе двигатели в полости картера образуются партерные газы Их необходимо отводить для предотвращения просачивания масла в местах уплотняемых поверхностей под действием избыточного давления. Соединение с трубопроводом чистого воздуха, в котором имеет место более низкое дав пение, обесчи чивает вентиляцию. В современ ных двигателях осуществляется регулировка системы вентиляции с помощью клапана регулировки давления. Маслоотделитель очищает картерные газы от масла, и оно возвращается через отводящий трубопровод в масляный поддон.

Нерегулируемая вентиляция картера
В случае нерегулируемой вентиляции картера смешанные с маслом картерные газы отводятся с помощью разрежения при самых высоких частотах вращения коленвала двигателя. Это разрежение создается при соединении с впускным каналом. Отсюда смесь попадает в маслоотделитель. Происходит разделение картерных газов и моторного масла.
В дизельных двигателях BMW с нерегулируемой вентиляцией картера разделение осуществляется с помощью проволочной сетки. „Очищенные» картерные газы отводятся во впускной коллектор двигателя, в то время как моторное масло возвращается в масляный поддон. Уровень разрежения в блок-картере ограничивается с помощью калиброванного отверстия в канале чистого воздуха. Слишком большое разрежение в блок-картере ведет к пробою уплотнений двигателя (сальники коленчатого вала. уплотнительная прокладка фланца масляного поддона и т. п.). При этом в двигатель попадает неот-фильтрованный воздух, и, как следствие, происходит старение масла и образование шлама.

Процесс регулировки
При неработающем двигателе клапан регулировки давления открыт (состояние А). На обе стороны мембраны действует давление окружающей среды, т. е. мембрана полностью открыта под действием пружины.
При запуске двигателя нарастает разрежение во впускном коллекторе и клапан регулировки давления закрывается (состояние В). Это состояние всегда сохраняется на холостом ходу или при движении накатом, т. к. при этом картерные газы отсутствуют. На внутреннюю сторону мембраны, таким образом, действует большое относительное разрежение (относительно давления окружающей среды). При этом давление окружающей среды, которое действует на внешнюю сторону мембраны, закрывает клапан против усилия пружины. При нагрузке и вращении коленвала появляются картерные газы. Картерные газы (8) уменьшают относительное разрежение, которое действует на мембрану. Вследствие этого пружина может открыть клапан, и картерные газы уходят. Клапан остается открытым до тех пор, пока не установится равновесие между давлением окружающей среды и разрежением в картере плюс усилие пружины (состояние С). Чем больше выделяется картерных газов, тем меньше становится относительное разрежение, действующее на внутреннюю сторону мембраны, и тем больше открывается клапан регулировки давления. Тем самым в картере поддерживается определенное разрежение (ок. 15 мбар).

Источник

Читайте также:  Определение неисправности двигателя ваз