Плазменные двигатели внутреннего сгорания

Изготовление плазменных двигателей в России

Гигантские звездолеты с призрачно светящимися двигателями стали одним из постоянных атрибутов космической фантастики. В то же время плазменные двигатели уже полвека успешно используются в настоящей космонавтике, и российские разработчики являются одними из мировых лидеров. Такие двигатели производятся на калининградском предприятии «ОКБ Факел».

У такого двигателя нет топлива в привычном понимании, горючего и окислителя, необходимого для химической реакции с выделением тепла. СПД подходит практически любой газ, но лучше использовать химически неактивные и с высокой атомной массой, вроде аргона или ксенона. Плазменные двигатели обеспечивают очень высокую скорость выбрасываемой струи газа, например, для ксенона это около 30 км/с. Для сравнения, скорость выброса газа у одного из самых эффективных химических ракетных двигателей — кислород-водородного — около 4,5 км/с. Преимуществом химических двигателей является способность выбрасывать сразу много газа, что дает большую тягу. СПД же требует мощного источника электрической энергии, и даже с ним способен выбрасывать лишь незначительную массу газа за момент времени, то есть имеет очень малую тягу и требует много времени на разгон и торможение. Плазменные двигатели применяются только в космосе: оснащенные ими космические аппараты имеют относительно малый запас рабочего тела и большой размах солнечных батарей.

О возможностях использования электроракетных двигателей задумывались еще в начале XX века, но к первым испытаниям в космосе перешли только в 60-е годы. В 1972 году в системе ориентации советского спутника «Метеор» использовались два электроракетных двигателя: ионный и стационарный плазменный. СПД показал себя лучше, и советские специалисты сконцентрировались на этой разновидности. В создании экспериментальных образцов принимали участие специалисты «ОКБ Факел», и с того времени предприятие стало специализироваться на производстве двигателей такого типа, развивать и совершенствовать технологию.

После успешного полета к Луне европейские производители коммерческих геостационарных спутников стали закупать российские двигатели и создавать новые поколения спутников. Ранее на спутниках-ретрансляторах использовались химические двигатели на токсичном гидразине. Применение российских СПД открыло возможность создания т.н. «полностью электрических спутников», на которых уже не было химической тяги.

Разработчики «ОКБ Факел» активно сотрудничают с европейскими производителями и даже помогали французам сделать свой двигатель.

Необходимый этап создания космического двигателя — испытание. Для проверки СПД требуется смоделировать условия космоса, прежде всего вакуум.

В советские времена здесь разрабатывали самый мощный двигатель в своем классе — СПД-290. Сейчас создается сравнимый по мощности СПД-230.

Когда проходила экскурсия, сотрудники предприятия не признавались кто заказчик, ссылаясь на соглашение о неразглашении. Позже информация попала в СМИ и теперь мы знаем, что это OneWeb.

Проект низкоорбитального спутникового интернета предполагает запуск почти тысячи космических аппаратов в течение трех-четырех лет. И на каждом спутнике будет российский плазменный двигатель.

Работа почти ювелирная и неподготовленным взглядом воспринимается непривычно. Обычно под сборкой космических двигателей понимается что-то более масштабное.

Разумеется, музейный образец не начинен полонием и не радиоактивен.

Такие испытания позволяют повышать ресурс двигателей. Сейчас СПД обеспечивают гарантированную работу в течение нескольких тысяч часов. И, по словам представителей «ОКБ Факел», этот ресурс многократно подтвержден заказчиками, и новые заказы лучше всего говорят о качестве.

Источник

Плазменный двигатель: российские ракетные разработки, достоинства и недостатки

Плазменные двигатели основаны на получении тяги за счёт рабочего вещества, которое находится в состоянии плазмы. Они представляют собой разновидность электроракетных двигателей (ЭРД), мощность которых в настоящее время всё ещё невелика. Дальнейшее развитие этой технологии связано с созданием двигателя нового поколения — безэлектродного плазменного ракетного двигателя (БПРД). Российские специалисты в этом направлении разработок на данный момент продвинулись намного дальше зарубежных аналогов. Перспективный российский БПРД способен обладать высокими характеристиками, что сможет обеспечить серьёзный рост его мощности. Кроме того, высокая энергетическая эффективность позволяет использовать в качестве рабочего тела такого плазменного двигателя практически любое вещество.

Когда и как возникла идея разработки плазменного двигателя

О возможностях использования электроракетных двигателей задумывались ещё в начале XX века. Идея создания плазменного двигателя, в котором могла бы возникать реактивная тяга за счёт энергии ионов, параллельно была впервые публично выдвинута в 1911 году российским учёным Константином Циолковским, одним из теоретических основоположников космонавтики. Первые практические эксперименты в этом направлении в 1916 году были проведены уже американским «отцом космонавтики» — учёным Робертом Годдардом.

В то время подобные разработки не смогли стать основой каких-либо полноценных технических решений: они могли действовать только в условиях, максимально приближённых к вакууму. Вопросы использования плазменных технологий стали актуальными к 1960-м годам, когда СССР и США приступили к практическому освоению космического пространства. Учёными этих стран к тому времени были обоснованы принципы работы различных ионных двигателей, способных создавать реактивную тягу за счёт ионизированного газа, разогнанного до высоких скоростей в электрическом поле.

Первый работающий ионный двигатель был построен инженером НАСА Гарольдом Кауфманом в 1959 году. В качестве топлива он использовал ртуть. Суборбитальные испытания этого двигателя прошли в 1964 году, когда исследовательской ракетой был запущен научный зонд Sert 1 — первое в истории устройство, использовавшее конструкцию ионного двигателя в космосе. В 1970-х годах в США провели ряд повторных испытаний этой технологии, но в дальнейшем развивать её не стали.

Читайте также:  Правильные обороты двигателя ваз

В СССР подошли более основательно Теоретическое исследование плазмодинамики, осуществлённое академиком Алексеем Морозовым, считается наиболее фундаментальным в мировой науке. В 1972 году в системе ориентации советского спутника «Метеор» были использованы два электроракетных двигателя: «классический» ионный и стационарный плазменный (СПД). Последний вариант показал себя лучше, и советские специалисты сконцентрировались на этой разновидности двигателей. На их производстве стало специализироваться калининградское ОКБ «Факел», которое в дальнейшем стало развивать и совершенствовать данную технологию.

В настоящее время именно калининградские СПД лидируют в мире по характеристикам достигнутой мощности и производительности. Они широко востребованы многими зарубежными производителями коммерческих геостационарных спутников и применяются для поддержания их орбит. Российские СПД сделали возможным создание спутников без использования химической тяги, основанной на весьма токсичном топливе.

Схема работы плазменного двигателя

Основные типы плазменных двигателей для космических кораблей Принципы действия
Электростатический «Классический» ионный двигатель, действующий на основе «эффекта Холла», при котором замкнутый дрейф электронов под действием кольцевого электростатического поля обеспечивает реактивное истекание плазмы.

По принципиальной схеме холловские двигатели делятся на двигатели с анодным слоем (ДАС) и с протяжённой зоной ускорения (СПД) Электротермический Для генерации плазмы используются электромагнитные поля, что приводит к повышению температуры топлива. Далее тепловая энергия, передаваемая газообразному топливу, преобразуется в кинетическую Электромагнитный Плазменный двигатель, в котором ионы ускоряются за счёт воздействия электромагнитных полей — естественного (земного) и искусственного (генерируемого самим аппаратом)

Самыми используемыми в настоящее время пока что являются устройства, так или иначе действующие на эффекте Холла.

На сегодняшний день ионные двигатели необходимы спутникам, чтобы маневрировать в ближнем космосе — как правило, для удержания параметров стационарной орбиты, изменения своего курса или уклонения от космического мусора. Но существует и несколько проектов, связанных с использование ионных двигателей для дальних космических путешествий.

Самым известным из них стала автоматическая исследовательская миссия Dawn от НАСА. В сентябре 2007 года она была запущена для исследования астероида Веста и карликовой планеты Церера. Аппарат Dawn был оборудован тремя компактными ксеноновыми ионными двигателями NSTAR, которые разгоняли атомы до скорости в десять раз выше, чем могли это сделать современные химические двигатели.

Для полета Dawn требовалось в среднем 3,25 мг топлива в секунду, а на борту аппарата разместилось 425 кг ксенона. Через девять лет после запуска станция Dawn разогналась до скорости 39 900 км/час (11,1 км/с). 1 ноября 2018 года НАСА официально закончила миссию Dawn, поскольку ионные двигатели полностью выработали топливо.

Ещё одним космическим аппаратом, который использует ксеноновые ионные двигатели для дальних полётов, стала японская исследовательская станция по изучению астероида Рюгу «Хаябуса-2». Зонд оснащён четырьмя ионными двигателями IES и ксеноном массой 73 кг.

Можно ли собрать плазменный двигатель своими руками

В качестве демонстрационного образца «ионного двигателя» используется достаточно простое устройство, известное среди радиолюбителей под названием «качер Бровина». С его помощью можно наблюдать эффектные коронные разряды, молнии, а также плазменные дуги. Устройство было изобретено в 1987 году советским радиоинженером Владимиром Бровиным. Оно настолько простое, что изготовить его своими руками сможет даже начинающий радиолюбитель.

Качер Бровина питается от модифицированного сетевого адаптера 12 В, 2 А, потребляет 20 Вт. Он преобразует электрический сигнал в поле частотой 1 Мгц с эффективностью 90%. Для сборки устройства также потребуется пластиковая труба 80х200 мм — на неё будут намотаны первичные и вторичные обмотки резонатора. Вся электронная часть устройства размещается в середине этой трубы. Эта схема полностью стабильна, она может работать сотни часов без перерыва.

Демонстрационный образец работы «ионного двигателя» достигается последовательным повышением напряжения, подаваемого на качер Бровина. Если схема была собрана на транзисторе КТ902А, то стример на конце иглы должен появиться на 4 вольтах. С повышением напряжения он будет возрастать. При достижении 16 вольт он превратится в визуальный аналог фантастического «репульсорного» луча, а при 18 В увеличится примерно до 17 мм. Далее под напряжением 20 В электрические разряды будут напоминать в работе настоящий ионный двигатель.

Реальная двигательная установка, обеспечивающая заметную реактивную тягу при истечении плазмы, более известна как СМОЛА (Спиральная Магнитная Открытая ЛовушкА). Фактически она представляет собой собранный своими руками плазменный двигатель с небольшими по мощности характеристиками. Установка СМОЛА в целом представляет собой трубу с винтовым магнитным полем, которая заканчивается парой расширителей. Оптимальной считается комбинация из общей длины устройства (6 метров), величины магнитного поля (до 0,3 Тесла) и плотности плазмы (10^19 частиц в кубометре).

Реально действующая установка СМОЛА требует наличия достаточно серьёзной техники, в составе которой требуется:

Получившаяся плазма растекается вдоль силовых линий магнитного поля, проходит через трубу с винтовым полем, после чего, расширяясь, попадает на плазмоприёмник из изолированных друг от друга молибденовых пластин. Между пластинами можно подавать любые желаемые напряжения, чтобы раскрутить плазму радиальным электрическим полем.

Кто займётся реализацией проекта

Тематикой ЭРД и БПРД в СССР и России на протяжении десятилетий традиционно занимается НИЦ «Курчатовский институт». В настоящее время научно-лабораторная установка СМОЛА действует в новосибирском Институте ядерной физики сибирского отделения Российской Академии наук (ИЯФ СО РАН). Это плазменная ловушка, которая позволит проверить концепцию улучшенного удержания термоядерной плазмы в линейных магнитных системах.

Ученым удалось достичь в ней температуры плазмы в 100 тысяч градусов и добиться её достаточно большой плотности. Установка успешно отработала с параметрами, пригодными для создания ракетного двигателя по типу БПРД. В то же время практическая сторона вопросов разработки и применения нового российского безэлектродного плазменного ракетного двигателя относится к ведению госкорпорации «Роскосмос». Эта работа будет проводиться под эгидой одной из ведущих структур «Роскосмоса» — холдинга «НПО Энергомаш», а в его составе — воронежским АО «Конструкторское бюро химавтоматики» (КБХА).

Это мощное научно-производственное объединение осуществляет полный цикл создания жидкостных ракетных двигателей (в том числе для ракет-носителей «Союз-2» и «Ангара»), кислородно-водородных двигателей разгонных блоков, а также кислородно-метановых двигателей для перспективных ракет-носителей. Электроракетными двигателями КБХА занимается с 2010 года. В рамках этого направления уже был изготовлен демонстрационный образец магнитоплазмодинамического двигателя (МПД) мощностью до 10 кВт.

Какой мощностью будет обладать новый двигатель

Согласно заявлениям «Энергомаша», новое поколение ракетных плазменных двигателей будет обладать мощностью в «сотни» киловатт. Предполагается, что он будет мощнее как уже разработанных российских СПД, так и зарубежных новинок. В числе последних прежде всего следует отметить геликонный плазменный двигатель от Европейского космического агентства, создаваемый им совместно с Иранским космическим агентством и Австралийским национальным университетом. Подобную разработку также проводит американо-канадская компания Ad Astra Rocket Company. Эти двигатели имеют мощность соответственно в 250 и 200 кВт.

Инженеры НАСА в последние несколько лет занимаются разработкой новых плазменных двигателей в прежних схемах, рассчитанных лишь на увеличенное количество ксенона. В этих разработках пока есть сложность, поскольку увеличение веса космических аппаратов за счёт топлива негативно сказывается как на скорости их передвижения, так и на дальности полёта.

Мнение экспертов

Следует отметить, что основные российские разработки плазменных ракетных двигателей новых типов в 2010-е годы, как правило, не выходили за рамки демонстрационных установок, не отличающихся особой мощностью. Так, созданный КБХА совместно с НИИ прикладной механики и электродинамики Московского авиационного института высокочастотный ионный двигатель имеет мощность лишь 300 Вт. Ближайшие озвученные планы «Энергомаша» также сводятся к созданию очередных (разве что более мощных) лабораторных установок, а также испытательных стендов для них.

По мнению специалистов отрасли, это связано прежде всего с отсутствием практической востребованности таких разработок для текущей российской космической программы. При этом не следует забывать и о достаточно высокой стоимости оборудования, необходимого для проведения подобных исследований и разработок.

В то же время мнение экспертов однозначно склоняется к тому, что для космических запусков ракет-носителей традиционные химические двигатели будут применяться ещё очень долго. Плазменные двигатели требуют мощного источника электрической энергии, но и с ним способны обеспечить лишь очень малую тягу, притом с затратами большого времени на разгон и торможение. В то же время такие двигатели за счёт малых запасов рабочего тела весьма эффективны для работы в открытом космосе.

Чем уникальна новая российская разработка

Проект российского БПРД в параметрах, заявленных конечной целью проводимой доработки его конструкции, сможет обладать высочайшей энергоэффективностью. Его максимальные параметры мощности ограничиваются только мощностью подпитки высокочастотного генератора, которая на данный момент потенциально очень высоки благодаря недавним открытиям в области термоядерного синтеза.

Кроме того, российская разработка способна применять в качестве рабочего тела почти любое вещество. В существующих СПД большую проблему представляет собой эрозия электродов даже в инертных рабочих телах. Так как ограничения на воздействие рабочего вещества с конструктивными элементами БПРД сняты, то подобный двигатель будет обладать огромным рабочим ресурсом.

Достоинства и недостатки

Плазменные ракетные двигатели за десятилетия своего использования зарекомендовали себя следующими преимуществами в сравнении с традиционными реактивными двигателями на «химической» тяге:

В то же время свойственные таким двигателем недостатки сводятся к главному: слишком малой тяге. Они существенно уступают по данным показателям обычным ракетным двигателям, что делает их использование крайне неэффективным. Кроме того, весьма высоки затраты энергии на ионизацию. К тому же в условиях земной атмосферы высвобождаемые ионы крайне химически активны, образуя весьма агрессивные соединения.

Таким образом, ближайшее будущее плазменных ракетных двигателей будет связано исключительно с их применением на достаточно дальних космических маршрутах и уже сложившейся ролью дополнительных двигателей на околоземных спутниках, которым требуется совершать манёвры в космосе. В последнем варианте перспективным направлением для использования ионных двигателей может стать уборка орбитального «космического мусора», проблема с которым ежегодно обостряется.

Источник

Как работает плазменный ракетный двигатель и какое у него будущее?

Это уникальное явление представляет из себя один из типов электрического ракетного двигателя, расходуемое вещество которого получает ускорение в состоянии плазмы. В сравнении с жидкостными агрегатами, эти устройства нельзя использовать для того, чтобы выводить грузы на орбиту. Это обусловлено тем, что аппараты работают исключительно в вакууме. Также учитывая уменьшение запасов рабочего тела в призме относительно высокой скорости его истечения, их следует рассматривать как один из способов совершения быстрых космических перелетов. Более подробно о том, что же все-таки такое плазменный двигатель для космических кораблей, как работает устройство и есть ли у него будущее, читай прямо сейчас.

Работают над этими инновационными аппаратами с середины XX в. Испытания первого прототипа провели NASA в 60-х годах. Возможная область применения двигателей достаточно широкая: от ориентации космических аппаратов в пространстве до полетов к другим телам Солнечной системы и совершение небольших орбитальных маневров.

Принцип работы

На удивление экспериментальная установка устроена очень просто. При помощи компрессора воздух под давлением идет в кварцевую трубку. К ней присоединен волновод, у которого на одном конце установлен магнетрон мощностью в 1 кВт. Именно это то устройство, которое отвечает за разогрев еды в микроволновке. Оно генерирует излучение в 2,45 ГГц, благодаря которому происходит ионизация и нагрев подаваемого воздуха. В итоге мы получаем плазму, в будущем отводящуюся в «реактивное сопло». Данный аппарат выглядит как кварцевая трубка в диаметре 24 см.

Таким образом, один конец у нас с, так называемой, микроволновкой. Отметим, что аппарат охлаждается простой водой. Если этого не делать, то есть риск возникновения выскоплазменного электромангала.

В результате эксперимента тяга, которую создали китайские ученые, заставляет подпрыгивать стальной шар, который весит 1 кг. Его крепят на конце импровизированного сопла. Проанализировав полученные данные, можно сказать, что подъемная сила в 28 Н/кВт, а также давление в 24 кН/кв.м. дает вполне реальную жизнь идее, когда воздушно плазменный реактивный двигатель становится интересным аналогом обычного реактивного двигателя, который работает на ископаемом топливе.

Ошеломляющий результат разработки – сразу три весомых для планеты пункта:

Ученые предполагают, что в будущем такими двигателями можно оснастить самые разные устройства, в том числе и самолеты. Но внедрить изобретение можно только тогда, когда будут разработаны компактные и мощные источники энергии. Ими вполне могут стать портативные термоядерные реакторы.

Для всех плазменных ракет свойственно работать по одному принципу. Речь идет о ситуации, когда предельно близко работают электрические и магнитные поля. На первом этапе происходит преобразование газа, как правило, ксенона или криптона, в плазму. Дальше происходит ускорение ионов в плазме из двигателя при скорости больше 72 тыс. км/ч. При этом создается тяга в необходимом направлении. На данный момент есть ни один способ, который дает возможность применить данную формулу для формирования рабочей плазменной ракеты. Три из них считаются максимально удачными и перспективными.

Двигатель Холла

Отличается этот вариант тем, что здесь нет ограничений, которые налагаются объемным зарядом. Благодаря этому обеспечивается большая плотность тяги. Как результат, этот тип двигателя способствует увеличению скорости ракет в несколько раз в сравнении, к примеру, с ионными агрегатами в том же размере.

Идея принадлежит американскому физику, Эдвину Холлу. Ученый показал миру, как в проводнике с взаимно перпендикулярным электрическим и магнитным полем образуется электроток. Основная фишка в направлении – оно для обоих перпендикулярно. Иными словами, в данном устройстве образование плазмы происходит при помощи заряда между анодом и катодом. Это совершенно простое действие отделяет электроны от нейтральных атомов.

В наше время в пределах околоземных орбит находится около 200 спутников, работающих на данном устройстве.

Эта грозная аббревиатура расшифровывается как абляционный импульсный плазменный двигатель. Основная зона его предназначения – малые космические аппараты, оснащенные неплохим спектром функциональных возможностей. Расширение устройства обеспечивает высокоэффективный малогабаритный агрегат, который сможет корректировать и поддерживать орбиту.

Стоит отметить, что данное устройство весьма перспективно и имеет весомые плюсы:

Стационарные двигатели

В первую очередь, при рассмотрении этого устройства, важно отметить малую врабатываемость мощности и компактность. Область применения его в космической технике – исполнительный орган электрореактивной установки.

Также он является незаменимым помощников во время научных исследований. Стационарный двигатель дает возможность моделировать с высокой точностью направленные плазменные потоки. Иначе говоря, его можно назвать магнетроном, который часто используют в промышленном направлении.

Преимущества перед другими видами

Помимо явной заботы об окружающей среде плазменные двигатели имеют еще один большой плюс. Речь идет об удельном импульсе, иными словами, скорости, с которой аппарат выбрасывает реактивную струю. Рекордные показатели реактивных двигателей для рассматриваемого устройства – посредственный результат. Если верхняя планка первых максимально достигает 4 км/с, то в случае реактивного агрегата среднее значение закрепилось на 10 км/с. Стоит отметить, что предела нет.

Рекомендуем ознакомится: Какую максимальную скорость может развить корабль в космосе.

Если у ракет на обычных двигателях с этим есть явные проблемы, то агрегаты на плазме работают на высоте. Так, толчки от деятельности АИПД смогли раскрыть солнечную батарею, которая заела.

Также нельзя не отметить предельную простоту и низкую стоимость конструкции. Все это граничит с высокой надежностью и возможностью работать на самых разнообразных телах. Кроме этого, агрегаты имеют небольшой вес и выглядят компактно. В них нет сжатых газов, химически активных, токсичных веществ. Это говорит о том, что они абсолютно безопасны в нерабочем режиме.

Будущее инновационного изобретения

Размышляя о будущем этих устройств, вырисовывается два разных направления:

Сегодня есть множество крошечных спутников, которые выполняют достаточно серьезные задачи. Например, устройства CubeSat дистанционно зондируют Землю. Размер спутников ограничивает доступную электрическую мощность. Поэтому на данный момент для решения этой проблемы стал серьезно рассматриваться вопрос использования АИПД.

Также еще одна область фантазий – это строительство обитаемой станции или базы на Лунной орбите. В этом вопросе оснащении их двигателями такого устройства просто необходимо.

Отмечается, что плазменный двигатель для космических кораблей набирает скорость медленнее обычных. Но здесь кроется парадоксальная ситуация: наряду с низкой скорость на начальном этапе в последующем на далеких дистанциях движение происходит гораздо быстрее.

Источник

Читайте также:  Самые большие обороты двигателя