Реактивный прямоточный водометный двигатель

Гидрореактивный движитель или Электрический «водомет»

Не так далек тот день, когда любое судно, большое или малое, при желании, можно будет модернизировать в электрическое. Для этого достаточно будет установить подвесные гидрореактивные движители, с питанием от аккумуляторов.

Если сравнить DeepSpeed с гребными винтами и обычными водометами, то преимущества очевидны. Во-первых, механические потери при ее работе практически сведены к нулю: нет шестерен, валов или универсальных шарниров, передающих мощность от двигателя к приводу, а только пара проводов, проводящих ток от батарей.

Во-вторых, компактный и легкий корпус, который весит всего 75 кг (без аккумуляторной батареи) занимает гораздо меньше места, чем двигатель и топливный бак. В-третьих, в отличие от гребного винта, эффективность которого снижается с увеличением скорости движения из-за кавитации и потерь, в DeepSpeed за счет мощной энергии струи повышается эффективность и энерговооруженность лодок.

DeepSpeed объединяет водометную турбину, аккумуляторную батарею и электронику управления, а также систему получения энергии на борту. Таким образом, Sealence планирует выпускать комплекты силовых установок для модернизации судов, оборудованных бензиновыми или дизельными двигателями.

Чуть позже, загоревшись идеей, он сделал компьютерную модель установки, а первый рабочий прототип увидел свет в 2010 году.

Прототип DeepSpeed 2021 года похож на корпус реактивного авиационного мотора, поскольку, как и турбовентиляторный двигатель, он спроектирован, чтобы направлять воду (а не воздух) в переднюю часть, ускоряя ее через меньшее выпускное сопло. Вращающиеся лопасти одноступенчатого рабочего колеса создают тягу, обеспечивая большую скорость при меньших энергопотерях на высоких оборотах.

Чем быстрее движется лодка, тем больше воды подается в водомет, повышая его общую эффективность. Поскольку двигатель с водометным движителем расположен снаружи корпуса, а не внутри него, снижается уровень шума и вибрации, передаваемых не корпус. Кроме того, для такого устройства не требуется дополнительная система охлаждения – его эффективность обеспечивает набегающий поток воды.

Некоторые производители лодок уже рассматривают варианты установки реактивных движителей DeepSpeed на вновь разрабатываемые или на существующие конструкции лодок при их модернизации.

Amer Yachts и Scanner Marine еще в апреле 2020 объявили, что работают над установкой электрических гидроактивных двигателей DeepSpeed на их Envy 710 RIB.

Читайте также:  Отключение двигателя при перегрузке

Новая силовая установка DeepSpeed DS-780 мощностью 680 л.с. и крутящим моментом 1500 Н • м.имеет пиковую мощность тяги, которая эквивалентна достаточно «прожорливому» двигателю внутреннего сгорания. Ожидается, что модель будет максимально эффективна в диапазоне скоростей от 16 до 26 узлов на полуглиссирующих корпусах яхт. Другая мощная, но меньшая по размерам силовая установка DS-420 предназначена для быстрых лодок с ожидаемой номинальной мощностью – 300 л.с., и крутящим моментом- 560 Н • м.

В перспективе Sealence планирует вывести на рынок полный пакет гибридных и электрических силовых установок, с модульной системой литий-ионных батарей, солнечными панелями, дизельным резервным генератором питания и расширенной линейкой движителей DeepSpeed, управляемых через Smartbox. На сегодняшний день – это лодки длиной от 9 до 24 метров.

Рассказ о проекте DeepSpeed будет неполным, если не упомянуть историю о том, как стартап нашел 3 миллионов евро инвестиций. На краудфандинговой площадке в два этапа были собраны средства необходимые для запуска стартапа. Успех впечатляет и его легко объяснить. Итальянские инженеры представили интересный и реальный работающий проект. Уважение вызывают научные изыскания команды, постоянное тестирование стартапа и совершенствование продукта, который выпускается частной фирмой без особой господдержки.

Источник

Прямоточный воздушно-реактивный двигатель

Прямоточный воздушно-реактивный двигатель (ПВРД, англоязычный термин — Ramjet) — реактивный двигатель, является самым простым в классе воздушно-реактивных двигателей (ВРД) по устройству. Относится к типу ВРД прямой реакции, в которых тяга создается исключительно за счёт реактивной струи истекающей из сопла. Необходимое для работы двигателя повышение давления достигается за счёт торможения встречного потока воздуха. ПВРД неработоспособен при низких скоростях полёта, тем более — при нулевой скорости, для выхода его на рабочую мощность необходим тот или иной ускоритель.

Содержание

История

В 1913 году француз Рене Лорен получил патент на прямоточный воздушно-реактивный двигатель. ПВРД привлекал конструкторов простотой своего устройства, но главное — своей потенциальной способностью работать на гиперзвуковых скоростях и в самых высоких, наиболее разреженных слоях атмосферы, то есть в условиях, в которых ВРД других типов неработоспособны или малоэффективны. В 1930-е годы с этим типом двигателей проводились эксперименты в США (Уильям Эвери), в СССР (Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев).

Читайте также:  Неисправности коробок перемены передач

В 1937 году французский конструктор Рене Ледюк получил заказ от правительства Франции на разработку экспериментального самолёта с ПВРД. Эта работа была прервана войной и возобновилась после её окончания. 19 ноября 1946 года состоялся первый в истории полёт аппарата с маршевым ПВРД, Leduc 010. Далее в течение 10 лет было изготовлено и испытано ещё несколько экспериментальных аппаратов этой серии, в том числе, пилотируемые Leduc 021 и Leduc 022, а в 1957 году правительство Франции отказалось от продолжения этих работ — бурно развивавшееся в то время направление ТРД представлялось более перспективным.

Обладая рядом недостатков для использования на пилотируемых самолётах (нулевая тяга на месте, низкая эффективность на малых скоростях полёта), ПВРД является предпочтительным типом ВРД для беспилотных одноразовых снарядов и крылатых ракет, благодаря своей простоте, а, следовательно, дешевизне и надёжности. Начиная с 50-х годов XX века в США было создан ряд экспериментальных самолётов и серийных крылатых ракет разного назначения с этим типом двигателя.

Принцип действия

Рабочий процесс ПВРД кратко можно описать следующим образом:

Зависимость тяги ПВРД от скорости полёта определяется несколькими факторами:

В общем, зависимость тяги ПВРД от скорости полёта, может быть представлена следующим образом: пока скорость полёта значительно ниже скорости истечения реактивной струи, тяга растёт с ростом скорости полёта (вследствие повышения расхода воздуха, давления в камере сгорания и термического КПД двигателя), а с приближением скорости полёта к скорости истечения реактивной струи, тяга ПВРД падает, миновав некоторый максимум, соответствующий оптимальной скорости полёта.

Тяга ПВРД

Сила тяги ПВРД определяется выражением

Где — сила тяги, — скорость полёта, — скорость реактивной струи относительно двигателя, — секундный расход горючего.

Секундный расход воздуха:

Где — плотность воздуха(зависит от высоты), -объём воздуха, который поступает в воздухозаборник ПВРД за единицу времени, — площадь сечения входа воздухозаборника, — скорость полёта.

Можем определить секундный расход массы рабочего тела для идеального случая. когда горючее полностью згорает и полностью используется кислород воздуха в процессе горения:

Где — секундный расход воздуха, — секундный расход горючего, — стехиометричнеский коэффициент смеси горючего и воздуха.

Конструкция

Конструктивно ПВРД имеет предельно простое устройство. Двигатель состоит из камеры сгорания, в которую из диффузора поступает воздух, а из топливных форсунок — горючее. Заканчивается камера сгорания входом в сопло, как правило, суживающееся-расширяющееся.

Читайте также:  Подушки для двигателя 2109

С развитием технологии смесевого твёрдого топлива, оно стало применяться в ПВРД. Топливная шашка с продольным центральным каналом размещается в камере сгорания. Рабочее тело, проходя по каналу, постепенно окисляет топливо с его поверхности, и нагревается само. Использование твёрдого топлива ещё более упрощает конструкцию ПВРД: ненужной становится топливная система. Состав смесевого топлива для ПВРД отличается от используемого в РДТТ. Если для ракетного двигателя большую часть топлива составляет окислитель, то для ПВРД он добавляется лишь в небольшом количестве для активизации процесса горения. Основную часть наполнителя смесевого топлива ПВРД составляет мелкодисперсный порошок алюминия, магния или бериллия, теплота окисления которых значительно превосходит теплоту сгорания углеводородных горючих. Примером твёрдотопливного ПВРД может служить маршевый двигатель противокорабельной крылатой ракеты П-270 Москит.

В зависимости от скорости полёта ПВРД подразделяются на дозвуковые, сверхзвуковые и гиперзвуковые. Это разделение обусловлено конструктивными особенностями каждой из этих групп.

Дозвуковые ПВРД

Дозвуковые ПВРД предназначены для полётов на скоростях с числом Маха от 0,5 до 1. Торможение и сжатие воздуха в этих двигателях происходит в расширяющемся канале входного устройства — диффузоре.

Эти двигатели характеризуются крайне низкой эффективностью. При полёте на скорости М=0,5 степень повышения давления в них (как следует из формулы 2) равна 1,186, вследствие чего их идеальный термический КПД (в соответствии с формулой (3)) составляет всего 4,76 %, а с учётом потерь в реальном двигателе эта величина становится почти равной 0. Это означает, что на скоростях полёта при M Сверхзвуковые ПВРД

Сверхзвуковые ПВРД (СПВРД) предназначены для полётов в диапазоне 1 где — температура невозмущённого потока.

При М=5 и Тo=273K (что соответствует 0 °C) температура заторможенного рабочего тела достигает 1638К, при М=6 — 2238К, а с учётом трения и скачков уплотнения в реальном процессе — ещё выше. При этом дальнейший нагрев рабочего тела за счёт сжигания топлива становится проблематичным из-за ограничений, накладываемых термической устойчивостью конструкционных материалов, из которых изготовлен двигатель. Потому скорость, соответствующая М=5 считается предельной для СПВРД

Источник

Adblock
detector