Сердце двигателя внутреннего сгорания

Содержание
  1. Что такое двигатель и какой его принцип работы?
  2. Что такое ДВС и для чего он нужен?
  3. Устройство двигателя внутреннего сгорания
  4. Принцип работы двигателя
  5. Принцип работы четырехтактного двигателя
  6. Принцип работы двухтактного двигателя
  7. Классификация двигателей
  8. По рабочему циклу
  9. По типу конструкции
  10. По количеству цилиндров
  11. По расположению цилиндров
  12. По типу топлива
  13. По принципу работы ГРМ
  14. По принципу подачи воздуха
  15. Преимущества и недостатки ДВС
  16. Заключение
  17. Принцип работы двигателя
  18. Принцип работы и устройство двигателя
  19. Устройство двигателя внутреннего сгорания
  20. Принцип работы двигателя
  21. Системы двигателя
  22. ГРМ — газораспределительный механизм
  23. Система смазки
  24. Система охлаждения
  25. Система подачи топлива
  26. Выхлопная система
  27. Принцип работы ДВС. Рабочие циклы двигателя
  28. Рабочий цикл четырехтактного бензинового двигателя
  29. Рабочий цикл четырехтактного дизеля
  30. Принцип работы многоцилиндровых двигателей
  31. Устройство двигателя внутреннего сгорания
  32. Особенности работы
  33. Потери
  34. Принцип действия поршневых двигателей внутреннего сгорания
  35. Устройство и основные детали бензиновых ДВС

Что такое двигатель и какой его принцип работы?

Называть двигатель сердцем автомобиля – сравнение банальное, но точное. Можно сколько угодно перебирать подвеску, настраивать рулевое управление или совершенствовать тормоза – если мотор не в порядке, всё это превращается в пустую трату времени.

Сегодня на дорогах можно встретить автомобили разных поколений: и со старенькими карбюраторными ДВС, и с мощными дизельными моторами, управляемыми электроникой, и даже новейшие водородные двигатели, которые еще только начинают совершенствоваться. И во всём этом разнообразии довольно сложно сориентироваться, если не знать основ и принципов работы двигателя внутреннего сгорания.

Что такое ДВС и для чего он нужен?

Чтобы транспорт ехал, что-то должно приводить его в движение. В разные времена это были запряженные животные, затем на смену пришли паровые и электродвигатели (да, прародители современных автомобилей появились даже раньше, чем традиционные ДВС), затем моторы, работающие на горючем топливе.

Современный двигатель внутреннего сгорания – это механизм, преобразующий энергию вспышки топлива (тепла) в механическую работу. Несмотря на достаточно громоздкую конструкцию, на сегодняшний день ДВС остается самым удобным источником энергии.

Электротранспорт, конечно, всё больше входит в обиход, но время его «заправки» сводит на нет все преимущества – канистру с электричеством в багажник не положишь.

Свое применение ДВС нашел во многих сферах: по одинаковому принципу работают автомобили, мотоциклы и скутеры, сельскохозяйственная и строительная техника, водный транспорт, двигатели самолетов, военная техника, газонокосилки… То есть, практически всё, что ездит или летает.

Устройство двигателя внутреннего сгорания

Несмотря на разнообразие типов и конструкций ДВС, принцип его устройства остается практически неизменным на любой технике. Конечно, отдельные элементы конструкции могут сильно отличаться на разных двигателях, но основные узлы и компоненты очень похожи между собой.

Итак, двигатель внутреннего сгорания состоит из таких конструктивных узлов.

Каждая их этих частей постепенно развивается и совершенствуется в зависимости от запросов времени. Стремление к росту мощности сменилось поиском самых надежных и долговечных решений, затем на первое место вышла экономия топлива, а сегодня – забота о природе.

Принцип работы двигателя

Во всех ДВС, какой бы конструкции они ни были, используется один и тот же принцип работы. Это преобразование энергии теплового расширения при сгорании топлива сначала в прямолинейное, а затем во вращательное движение.

Принцип работы четырехтактного двигателя

Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации. Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта). Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.

По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.

При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.

Принцип работы двухтактного двигателя

Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:

Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.

При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.

Классификация двигателей

Поскольку ДВС растут и совершенствуются уже более 100 лет, набралось довольно много их разновидностей. Классифицируют двигатели по разным признакам и свойствам.

По рабочему циклу

Это уже известное нам деление двигателей на двухтактные и четырехтактные.

По типу конструкции

Есть два основных типа ДВС: поршневой и роторный.

По количеству цилиндров

В ЦПГ двигателя может устанавливаться от 1 до 16 цилиндров, для легковых автомобилей это обычно 3-8. Как правило, конструкторы предпочитают четное количество цилиндров, чтобы уравновесить циклы их работы. Самое известное исключение из правил – двигатель Ecoboost, разработанный концерном Ford, во многих моделях которого ставится как раз три цилиндра.

По расположению цилиндров

Компоновка ЦПГ не всегда рядная (хоть рядный двигатель – самый простой в ремонте и обслуживании). В зависимости от фантазии инженеров, двигатели делятся на несколько типов компоновки:

В легковых автомобилях используются рядные, V-, VR-, W- и U-образные двигатели, а в некоторых моделях и оппозитные. А вот радиальные применяются в авиационной технике.

По типу топлива

Классика жанра здесь – бензиновые и дизельные двигатели. Набирают популярность газовые, постепенно совершенствуются гибридные и водородные.

По принципу работы ГРМ

Ключевой элемент газораспределительного механизма – распредвал, объединенный с коленвалом двигателя с помощью ремня или цепи ГРМ. Распредвал за счет своей конструкции регулирует работу клапанов, и вся система работает синхронно с частотой оборотов двигателя. Обрыв ремня ГРМ – почти всегда путь на капремонт.

В зависимости от компоновки ЦПГ в двигателе может стоять 1 распредвал, если двигатель рядный, или 2-4 распредвала, если это V-образная компоновка.

Однако стандартная система ГРМ перестала отвечать современным требованиям к мощности и экономичности двигателей. И теперь, кроме стандартной механической системы, есть адаптивные системы, такие как Honda i-VTEC, VTEC-E и DOHC, Toyota VVT-i, Mitsubishi MIVEC, разработки компаний Volkswagen и Eco-Motors, а также пневматическая система ГРМ, установленная на Koenigsegg Regera и в перспективе добавляющая 30% мощности двигателю.

Читайте также:  Падение мощности двигателя bmw

По принципу подачи воздуха

Еще одна классификация, которая часто встречается в обиходе: деление двигателей на атмосферные и турбированные.

Турбированные двигатели имеют свои преимущества и недостатки: с одной стороны, чем больше воздуха, тем больше мощности может развить двигатель. С другой – эффект турбоямы способен серьезно попортить нервы любителю спортивной езды. Да и лишний узел – лишнее слабое место, так что турбированные двигатели (или битурбо, как называют мотор с двумя турбинами) нравятся далеко не всем. Иногда хорошо собранный атмосферник может «заткнуть за пояс» любой наддув.

Преимущества и недостатки ДВС

Какой же основной недостаток у ДВС?

Так что, если раньше сосед дядя Вася перебирал двигатель своей «копейки» самостоятельно, но на новеньких современных машинах вряд ли кто-то полезет в тонкую систему ДВС без специального оборудования и инструментов.

И, наконец, нефтяная эра сама по себе отходит в прошлое. Не зря же растут требования к экологической безопасности транспорта, а заодно и эффективность солнечных батарей. Да, бензиновые и дизельные моторы еще не скоро исчезнут с улиц, но уже Европа борется за внедрение электромобилей, благодаря которым человечество когда-нибудь забудет слово «бензиновый смог».

Заключение

Несмотря на любые недостатки, ДВС остается «главным по транспорту». Химики придумывают новые моторные масла, инженеры разрабатывают новые системы ГРМ, а производители бензина не спешат снижать цены. Всё потому, что с удобством и автономностью привычных нам двигателей пока не может сравниться ни один вид транспорта.

Источник

Принцип работы двигателя

Принцип работы и устройство двигателя

Двигатель внутреннего сгорания называется так потому что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях.

Принцип работы ДВС основан на физическом эффекте теплового расширения газов, образующихся в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя.

Выделяемая в этом процессе энергия преобразуется в механическую работу.

В процессе эволюции ДВС выделились несколько типов двигателей, их классификация и общее устройство:

Устройство двигателя внутреннего сгорания

Первые поршневые ДВС имели лишь один цилиндр небольшого диаметра. В дальнейшем, для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. “Сердце” современного автомобиля может иметь до 12 цилиндров.

Наиболее простым является двигатель с рядным расположением цилиндров. Однако, с увеличением количества цилиндров растет и линейный размер двигателя. Поэтому появился более компактный вариант расположения — V-образный. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Обычно используется для 6-цилиндровых двигателей и более.

Одна из основных частей двигателя — цилиндр (6), в котором находится поршень (7), соединенный через шатун (9) с коленчатым валом (12). Прямолинейное движение поршня в цилиндре вверх и вниз шатун и кривошип преобразуют во вращательное движение коленчатого вала.

На конце вала закреплен маховик (10), назначение которого придавать равномерность вращению вала при работе двигателя. Сверху цилиндр плотно закрыт головкой блока цилиндров (ГБЦ), в которой находятся впускной (5) и выпускной (4) клапаны, закрывающие соответствующие каналы.

Клапаны открываются под действием кулачков распределительного вала (14) через передаточные механизмы (15). Распределительный вал приводится во вращение шестернями (13) от коленчатого вала. Для уменьшения потерь на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться.

Но главная задача – заставить работать поршень, ведь именно он является главной движущей силой. Для этого в цилиндры должны подаваться горючая смесь в определенной пропорции (у бензиновых) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Топливо воспламеняется в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение.

Принцип работы двигателя

Из-за низкой производительности и высокого расхода топлива 2-тактных двигателей практически все современные двигатели производят с 4-тактными циклами работы:

Точка отсчета — положение поршня вверху (ВМТ — верхняя мертвая точка). В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. Это первый такт цикла.

Во время второго такта поршень достигает самой нижней точки (НМТ — нижняя мертвая точка), при этом впускное отверстие закрывается, поршень начинает движение вверх, из-за чего топливная смесь сжимается. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.

Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.

На заключительном этапе поршень достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени работы двигателя.

Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч зажигания – элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. При такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600О С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Системы двигателя

Современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:

ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы.

К деталям ГРМ относятся:

ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.

Система смазки

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

Система охлаждения

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

Читайте также:  Номер на двигателе 6he1

Система подачи топлива

Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.

Выхлопная система

Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

Принцип работы ДВС. Рабочие циклы двигателя

На автомобилях устанавливают поршневые двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании. Рассмотрим принцип устройства и работы двигателя внутреннего сгорания (ДВС), а также его рабочие циклы.

Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ).

Впуск

По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

Сжатие

После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

Расширение или рабочий ход

В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.

Выпуск

При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Впуск

При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.

Сжатие

Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход

Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.

Выпуск

Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

Наиболее надёжными, неприхотливыми, экономичными в плане расходования топлива и необходимости в регулярном техобслуживании, являются поршневые двигатели.

Устройство двигателя внутреннего сгорания

Корпус двигателя объединяет в единый организм:

Четырёхтактный двигатель внутреннего сгорания в разрезе

При пуске двигателя в его цилиндры через впускные клапаны впрыскивается воздушно-топливная смесь и воспламеняется там от искры свечи зажигания. При сгорании и тепловом расширении газов от избыточного давления поршень приходит в движение, передавая механическую работу на вращение коленвала.

Читайте также:  Ремонт вмятин крыши автомобиля

Работа поршневого двигателя внутреннего сгорания осуществляется циклически. Данные циклы повторяются с частотой несколько сотен раз в минуту. Это обеспечивает непрерывное поступательное вращение выходящего из двигателя коленчатого вала.

Особенности работы

Принцип работы ДВС легковых автомобилей чаще всего основан на преобразовании энергии сгораемого бензина. Грузовики, трактора и специальная техника оборудуются в основном дизельными двигателями. Еще в качестве топлива может использоваться сжиженный газ. Дизельные двигатели не имеют системы зажигания. Воспламенение топлива происходит от создаваемого давления в рабочей камере цилиндра.

Рабочий цикл может осуществляться за один или два оборота коленчатого вала. В первом случае происходит четыре такта: впуск топлива и его воспламенение, рабочий ход, сжатие, выпуск отработанных газов. Двухтактный двигатель внутреннего сгорания полный цикл осуществляет за один оборот коленчатого вала. При этом за один такт происходит впуск топлива и его сжатие, а на втором – воспламенение, рабочий ход и выпуск отработанных газов. Роль газораспределительного механизма в двигателях такого типа играет поршень. Двигаясь вверх-вниз, он поочередно открывает окна впуска топлива и выпуска отработанных газов.

Кроме поршневых ДВС существуют еще турбинные, реактивные и комбинированные двигатели внутреннего сгорания. Преобразование в них энергии топлива в поступательное движение транспортного средства осуществляется по другим принципам. Устройство двигателя и вспомогательных систем также существенно отличается.

Потери

Несмотря на то что ДВС отличается надежностью и стабильностью работы, его эффективность недостаточно высока, как это может показаться на первый взгляд. В математическом измерении КПД двигателя внутреннего сгорания составляет в среднем 30-45 %. Это говорит о том, что большая часть энергии сгораемого топлива расходуется вхолостую.

КПД лучших бензиновых двигателей может составлять лишь 30 %. И только массивные экономные дизели, у которых много дополнительных механизмов и систем, могут эффективно преобразовать до 45 % энергии топлива в пересчете на мощность и полезную работу.

Устройство двигателя внутреннего сгорания не может исключить потери. Часть топлива не успевает сгорать и уходит с отработанными газами. Другая статья потерь – это расход энергии на преодоление различного рода сопротивлений при трении сопряженных поверхностей деталей узлов и механизмов. И еще какая-то часть ее тратится на приведение в действие систем двигателя, обеспечивающих его нормальную и бесперебойную работу.

Принцип действия поршневых двигателей внутреннего сгорания

В настоящее время на ТС применяются в основном четырехтактные поршневые ДВС.

Одноцилиндровый двигатель (рис. а) содержит следующие основные детали: цилиндр 4, картер 2, поршень 6, шатун 3, коленчатый вал 1 и маховик 14. Одним своим концом шатун соединяется шарнирно с поршнем при помощи поршневого пальца 5, а другим концом — также шарнирно с кривошипом коленчатого вала.

При вращении коленчатого вала происходит возвратно-поступательное движение поршня в цилиндре. За один оборот коленчатого вала поршень совершает по одному ходу вниз и вверх. Изменение направления движения поршня происходит в мертвых точках — верхней (ВМТ) и нижней (НМТ).

Верхней мертвой точкой называется самое удаленное от коленчатого вала положение поршня (крайнее верхнее при вертикальном расположении двигателя), а нижней мертвой точкой — самое близкое к коленчатому валу положение поршня (крайнее нижнее при вертикальном расположении двигателя).

Устройство и основные детали бензиновых ДВС

Цилиндр – важнейшая часть бензинового мотора, в котором происходит движение поршня, вызванное взрывом топливной смеси. В описанном выше примере речь идет об одном цилиндре. Такое устройство может иметь двигатель моторной лодки или сенокосилки. В моторах же автомобилей цилиндров больше – три, четыре, пять, шесть, восемь, двенадцать и более.

Расположение цилиндров в ДВС может быть следующим:

— рядным:

— V-образным:

— оппозитным (цилиндры горизонтально располагаются друг напротив друга):

Каждое расположение цилиндров имеет свои плюсы и минусы, из которых складывается характеристики тех или иных двигателей и затраты на их производство.

Поршень Эта деталь выполнена в виде металлического цилиндра, двигается вверх-вниз внутри цилиндра уже двигателя.

Клапаны. Могут быть впускными и выпускными. Открываются они в различные такты работы двигателя. Через впускные подается топливовоздушная смесь, через выпускные выходят выхлопные газы. В моменты сжатия и сгорания топлива все клапаны закрыты.

Свечи зажигания. С их помощью подается искра, которая необходима для воспламенения топлива. Правильная работа двигателя подразумевает точный момент подачи искры (раннее или позднее зажигание – неисправности). На каждый цилиндр двигателя приходится минимум одна свеча.

Поршневые кольца. Являются скользящим уплотнением между поршнем и стенкой цилиндра.

С их помощью выполняются следующие функции:

• топливовоздушная смесь не проникает из камеры сгорания в картер во время работы ДВС;

• препятствуют проникновению моторного масла из картера в камеры сгорания.

Картер. В нем находится коленвал и некоторое количество моторного масла.

Шатун. Служит для соединения между собой коленвала и поршня.

Распределительный вал. Его задача заключается в своевременном открытии и закрытии выпускных и впускных клапанов.

Гидравлические компенсаторы. Применяются не на всех моторах, служат для автоматической регулировки зазора между распределительным валом и клапанами. В случае же их отсутствия, зазор регулируется при помощи специальных шайб, и проводить эту процедуру необходимо на СТО на определенном пробеге двигателя.

Блок цилиндров. Самая большая часть двигателя, его основа. Может быть как чугунным, так и алюминиевым. Верхняя часть блока содержит головку (D) и клапанную крышку (B). Рабочие отверстия блока это и есть цилиндры двигателя.

Генератор. Служит для превращения механической энергии в электрическую, необходимую для питания бортовой сети автомобиля и зарядки АКБ. Заведенный автомобиль питает свою электронику от генератора.

Стартер. Пуск автомобиль осуществляется с его помощью.

Инжектор или карбюратор. Эти устройства служат для приготовления топливовоздушной смеси. Карбюратор уже не используется на относительно новых автомобилях. Теперь производители используют топливную рампу с форсунками и инжектор.

ТНВД. Топливный насос высокого давления используется и на некоторых бензиновых двигателях. Его задача – нагнетать под давлением определенное количество топлива и регулировать момент и количество его подачи.

Турбокомпрессор (турбина). Осуществляет принудительную подачу воздуха в цилиндры, чем увеличивает его мощность.

Водяной насос (помпа) системы охлаждения. Отвечает за циркуляцию антифриза по системе. Стоит отметить и термостат системы охлаждения, который пускает антифриз по малому или большому кругу (в зависимости от степени нагрева ОЖ).

Компрессор кондиционера. Отвечает за циркуляцию хладагента в системе кондиционирования.

Насос ГУР (гидроусилителя руля). Перемещает жидкость ГУР по системе рулевого управления.

Различные датчики, регуляторы и устройства. Датчики давления масла, массового расхода воздуха (ДМРВ), РХХ (регулятор холостого хода), положения дроссельной заслонки, сама дроссельная заслонка, ДПКВ (датчик положения коленвала), ДПРВ (датчик положения распредвала) и т.д. Вышеуказанные устройства контролируют работу силового агрегата, корректируют подачу воздуха, передают информацию на различные ЭБУ и приборную панель.

Источник

Adblock
detector