Системы запуска дизельных двигателей

Содержание
  1. Основные способы пуска судовых дизелей
  2. Дизельные двигатели
  3. Конструкционные особенности дизельных двигателей
  4. Запуск дизельного двигателя
  5. Устройство топливной системы дизельного мотора
  6. Основные компоненты топливной системы:
  7. Виды дизельных агрегатов
  8. Преимущества и недостатки использования дизельных двигателей
  9. Устройство и принцип работы системы запуска двигателя
  10. Что представляет собой
  11. Система пуска автомобиля назначение и технические требования
  12. Устройство системы запуска двигателя
  13. Как работает запуск двигателя
  14. Советы и рекомендации
  15. Особенности работы аккумуляторной батареи
  16. Заводские характеристики АКБ, которые влияют на ее работу
  17. Сила тока при старте
  18. Какой блок автозапуска выбрать
  19. Особенности запуска двигателя в зимних условиях
  20. Как устанавливают блок автозапуска на автомобиль
  21. Система выпуска отработавших газов
  22. Принцип работы оборудования автозапуска
  23. От чего зависит мощность АКБ, и как на это влияет пусковой ток?

Основные способы пуска судовых дизелей

Существует несколько способов пуска ДВС; главные из них: ручной пуск, стартерный пуск, пуск двигателя сжатым воздухом.

Вручную запускаются вспомогательные ДВС малой мощности, аварийные двигатели ( и для питания радиостанции) и главные двигатели спасательных шлюпок и небольших катеров: при помощи специального привода раскручивают коленчатый вал двигателя, при этом поршни совершают возвратно-поступательное движение; при определенной частоте вращения вала, когда температура в цилиндре становится выше температуры самовоспламенения топлива, включают топливные насосы. Многие двигатели с ручным пуском имеют декомпрессионное устройство, которое снимает компрессию в цилиндре двигателя во время разгона коленчатого вала, после чего декомпрессионное устройство отключается и включаются топливные насосы. Главное при ручном пуске — обезопасить обслуживающий персонал; с этой целью пусковые приспособления должны отключаться автоматически, как только частота вращения коленчатого вала становится больше частоты вращения рукоятки, т. е. когда двигатель начинает работать на топливе.

Суть стартерного пуска заключается в том, что коленчатый вал двигателя раскручивается электродвигателем или небольшим двигателем внутреннего сгорания, который предварительно запускается вручную (последний способ для пуска судовых дизелей не применяется). Электростартерный пуск применяется при запуске некоторых вспомогательных дизелей и главных двигателей небольших катеров, что особенно удобно при дистанционном управлении.

Разновидностью электрического пуска является пуск двигателя обратимым генератором; этот способ применяется в дизель-генераторной установке постоянного тока, когда на время пуска генератор работает как электродвигатель и раскручивает коленчатый вал дизеля. Источником электрической энергии при этом может быть аккумуляторная батарея или работающий дизель-генератор.

Запуск дизелей мощностью свыше 100 квт осуществляется, как правило, сжатым воздухом. Суть пуска дизелей сжатым воздухом заключается в следующем: в цилиндры дизеля поочередно, согласно порядку работы, через специальные пусковые клапаны направляется сжатый воздух, создающий усилие, достаточное для раскручивания коленчатого вала до пусковой частоты вращения, после чего включаются топливные насосы и некоторое время происходит параллельная работа системы пускового воздуха и системы подачи топлива, затем пусковую систему отключают и двигатель работает на топливе.

В систему пуска двигателя сжатым воздухом входят следующие устройства: воздухохранители (баллоны) сжатого воздуха, главный пусковой (маневровый) клапан, пусковой воздухораспределитель, пусковые клапаны цилиндров и трубопровод пускового воздуха.

Принципиальная схема пуска двигателя сжатым воздухом показана на рис. 80. Сжатый воздух из баллона 1 по трубопроводу 2 поступает к главному пусковому (маневровому) клапану 15 и к посту управления по трубопроводу 20, Для открытия маневрового клапана воздух от поста управления по трубопроводу 19 направляют в полость 18; в результате воздействия воздуха на поршень 17 открывается маневровый клапан 15 и пусковой воздух по магистрали 14 поступает одновременно ко всем пусковым клапанам 3; пусковой воздух действует на тарелку клапана и на разгрузочный поршень 4, площади которых равны, поэтому за счет пружины 5 пусковые клапаны остаются закрытыми.

Управляющий воздух по магистрали 12 поступает к золотниковым коробкам 9 и воздействует на золотники 10, Золотник, находящийся против косого среза кулачковой шайбы 13, преодолевает сопротивление пружины 11 и, перемещаясь вниз, открывает канал 7 для прохода управляющего воздуха к пусковому клапану. Воздействуя на поршень 6, управляющий воздух открывает пусковой клапан, и пусковой воздух из магистрали 14 поступает в цилиндр. За счет энергии пускового воздуха поршень в этом цилиндре перемещается вниз, и коленчатый вал двигателя начинает проворачиваться. От коленчатого вала вращается кулачная шайба 13. Если золотники управления всеми пусковыми клапанами расположены радиально и приводятся в действие от одной кулачной шайбы, то при ее проворачивании открывается золотник управления клапаном следующего цилиндра и т. д., согласно порядку работы цилиндров. При рядном расположении золотников каждый из них приводится в действие от своей кулачной шайбы, закрепленной на общем валу, однако принцип остается тот же. Система пуска остается включенной до тех пор, пока частота вращения коленчатого вала не станет достаточной для включения топливных насосов. Закрытие пусковых клапанов осуществляется следующим образом: кулачная шайба 13, поворачиваясь, перемещает вверх золотник 10, который сообщает надпоршневое пространство пускового клапана 3 через трубопровод 7 с каналом 8, — управляющий воздух стравливается в атмосферу, и пружина 6 закрывает пусковой клапан. После окончания пуска и закрытия главного маневрового клапана воздух из системы пуска стравливается в атмосферу через канал 16.

Источник

Дизельные двигатели

Конструкционные особенности дизельных двигателей

Дизельный двигательный агрегат – одна из разновидностей поршневых силовых установок. По своему исполнению он почти ничем не отличается от бензинового двигателя внутреннего сгорания. Там имеются те же цилиндры, поршни, шатуны, коленвал и прочие элементы.

Действие «дизеля» основано на свойстве самовоспламенения дизтоплива, распыляемого в пространстве цилиндра. Клапаны в таком моторе значительно усилены — это необходимо было сделать для того, чтобы агрегат был устойчив к повышенным нагрузкам в течение длительного времени. Из-за этого вес и размеры «дизеля» больше, чем у аналогичной бензиновой установки.

Есть и существенное отличие между дизельными и бензиновыми механизмами. Оно заключается в том, как именно образуется топливовоздушная смесь, каков принцип ее воспламенения и горения. Первоначально в работающие цилиндры направляется обычный чистый воздушный поток. По мере сжатия воздуха он прогревается до температуры около 700 градусов, после чего форсунки впрыскивают горючее в камеру сгорания. Высокая температура способствует моментальному самовозгоранию топлива. Горение сопровождается быстрым нагнетанием высокого давления в цилиндре, поэтому дизельный агрегат издает характерный шум в процессе работы.

Запуск дизельного двигателя

Пуск «дизеля» в холодном состоянии осуществляется благодаря свечам накаливания. Это нагревательные электроэлементы, интегрированные в каждую из камер сгорания. При включении зажигания свечи накаливания нагреваются до сверхвысоких температур = около 800 градусов. При этом разогревается воздух в камерах сгорания. Весь процесс занимает несколько секунд, а о готовности дизеля к запуску водителя оповещает сигнальный индикатор в панели приборов.

Подача электричества на свечи накаливания снимается автоматически примерно через 20 секунд после запуска. Это необходимо для обеспечения устойчивой работы холодного двигателя.

Устройство топливной системы дизельного мотора

Одной из самых важных систем двигателя, работающего на дизельном топливе, считается система подачи горючего. Ее главная задача – подача дизтоплива в цилиндр в жестко ограниченном количестве и только в заданный момент.

Основные компоненты топливной системы:

Основное назначение ТНВД — подача горючего на форсунки. Он работает по заданной программе в соответствии с тем режимом, в котором функционирует мотор, и действиями водителя. Фактически, современные топливные насосы являются высокотехнологичными механизмами, которые автоматически управляют работой дизельного мотора на основании управляющих воздействий водителя.

В тот момент, когда водитель выжимает газовую педаль, он не меняет количество подачи горючего, а вносит изменения в работу регуляторов в зависимости от силы нажатия на педаль. Именно регуляторы изменяют количество оборотов двигателя и, соответственно, скорость машины.

Как отмечают специалисты ГК Favorit Motors, на легковых авто, кроссоверах и внедорожниках чаще всего устанавливают ТНВД распределительной конструкции. Они имеют компактные размеры, равномерно подают топливо в цилиндры и качественно работают на высоких оборотах.

Форсунка получает топливо от насоса и регулирует его количество перед тем, как перенаправить горючее в камеру для сгорания. На дизельные агрегаты устанавливают форсунки с распределителем одного из двух видов: шрифтовым либо многодырчатым. Иглы распределителей изготавливаются из высокопрочных жаростойких материалов, поскольку они работают в условиях высоких температур.

Топливный фильтр — это простой и, одновременно, один из важнейших компонентов дизельного агрегата. Его рабочие параметры должны в точности соответствовать конкретному типу двигателя. Назначение фильтра — отделение конденсата (для этого предназначено нижнее сливное отверстие с пробкой) и устранение лишнего воздуха из системы (используется верхний насос подкачки). На некоторых моделях авто предусмотрена функция электрического подогрева топливного фильтра — это позволяет упростить запуск дизеля в зимний период.

Читайте также:  Описание двигателя дэу ланос

Виды дизельных агрегатов

В современном автомобилестроении используются два типа дизельных силовых установок:

У дизельных агрегатов с прямым впрыском камера сгорания интегрирована в поршень. Горючее впрыскивается в пространство над поршнем, после чего направляется в камеру. Прямой впрыск топлива обычно используется на низкооборотных силовых установках с большим рабочим объемом, где имеются сложности с процессом воспламенения.

Более распространены сегодня дизельные моторы с раздельной камерой. Впрыск горючей смеси производится не в пространство над поршнем, а в дополнительную полость, которая имеется в головке цилиндра. Такой способ оптимизирует процесс самовоспламенения. К тому же такой тип дизеля работает с меньшим шумом даже на самых высоких оборотах. Именно такие двигатели сегодня устанавливают на легковых автомобилях, кроссоверах и внедорожниках.

В зависимости от конструктивных особенностей дизельный силовой агрегат работает в четырехтактном и двухтактном циклах.

Четырехтактный цикл подразумевает следующие этапы работы силового агрегата:

Двухтактный цикл обычно используется при запуске дизельного агрегата. Суть его заключается в том, что такты сжатия воздуха и начало рабочего процесса у него укорочены. При этом поршень выпускает отработавшие газы через специальные впускные окна во время своей работы, а не после того, как опустится вниз. После принятия исходного положения осуществляется продувка поршня, чтобы удалить остаточные явления от горения.

Преимущества и недостатки использования дизельных двигателей

Силовые агрегаты на дизельном топливе характеризуются высокой мощностью и коэффициентом полезного действия. Специалисты ГК Favorit Motors отмечают, что автомобили с дизельными агрегатами с каждым годом становятся все более востребованными в нашей стране.

Во-первых, благодаря особенностям процесса горения топлива и постоянному выхлопу отработавших газов, дизель не предъявляет строгих требований к качеству топлива. Это делает их и более экономичными и доступными в обслуживании. Кроме того, расход топлива у дизельного мотора меньше, чем у бензинового агрегата аналогичного объема.

Во-вторых, самовозгорание топливно-воздушной смеси производится равномерно в момент впрыска. Поэтому дизельные двигательные аппараты могут работать на пониженных оборотах и, несмотря на это, выдавать очень высокий крутящий момент. Такое свойство позволяет сделать транспортное средство с дизельным агрегатом намного легче в управлении, нежели авто с потреблением бензинового топлива.

В-третьих, в использованных газовых выхлопах дизельного мотора содержится гораздо меньше окиси углерода, что делает эксплуатацию таких авто экологичной.

Несмотря на свою надежность и высокий моторесурс, дизельные силовые агрегаты со временем выходят из строя. Самостоятельно проводить ремонтные работы мастера ГК Favorit Motors не рекомендуют, ведь современные «дизели» — это высокотехнологичные установки. И для их ремонта необходимы специальные знания и оборудование.

Специалисты автосервиса Favorit Motors – это квалифицированные мастера, которые прошли стажировку и обучение в учебных центрах заводов-производителей. Они обладают доступом ко всей технологической документации и имеют многолетний опыт ремонта дизельных агрегатов любых модификаций. В нашем техцентре имеется все необходимое оборудование и узкопрофильные инструменты для диагностики и ремонта дизельных моторов. Кроме того, услуги по восстановлению и ремонту «дизелей», оказываемые в ГК Favorit Motors, являются необременительными для кошельков москвичей.

Мастера автосервиса отмечают, что долговечность работы «дизеля» напрямую зависит от того, насколько своевременно и качественно проводится сервисное обслуживание. В техцентре Favorit Motors регламентное ТО выполняется в строгом соответствии с технологическими картами производителя и с использованием только высококачественных сертифицированных запчастей.

Источник

Устройство и принцип работы системы запуска двигателя

Система запуска двигателя автомобиля осуществляет первичное вращение коленчатого вала ДВС, в результате чего происходит воспламенение топливно-воздушной смеси в цилиндрах и силовой агрегат начинает работать самостоятельно.

Главной задачей системы пуска становится проворачивание коленвала, что позволяет поршню выполнить необходимое для воспламенения заряда сжатие смеси в цилиндрах. Затем горючее воспламеняется (от внешнего источника в бензиновых двигателях, от сильного сжатия и нагрева в дизельных).

Далее коленчатый вал начинает вращаться самостоятельно, то есть двигатель запускается, обороты коленвала увеличиваются, вращение вала становится возможным благодаря преобразованию тепловой энергии сгорания топлива в механическую работу. Как только обороты коленвала достигают определенной частоты, происходит автоматическое отключение системы запуска.

В этой статье мы рассмотрим, как работает электрическая система пуска двигателя, из каких какие основных элементов она состоит, а также поговорим о том, какие еще бывают системы запуска ДВС, кроме электрических решений.

Что представляет собой

В современных автомобилях реализована электрическая система пуска двигателя. Также ее часто называют стартерной системой пуска. Одновременно с вращением коленвала в работу включается система ГРМ, зажигания и топливоподачи. Происходит сгорание топливовоздушной смеси в камерах сгорания и поршни проворачивают коленвал. После достижения определенных оборотов коленчатого вала двигатель начинает работать самостоятельно, по инерции.


Запуск двигателя

Чтобы запустить двигатель, нужно достичь определенной частоты вращения коленчатого вала. Для разных типов двигателей это значение отличается. Для бензинового мотора минимально необходимо 40-70 об/мин, для дизельного – 100-200 об/мин.

На начальном этапе автомобилестроения активно использовалась механическая система пуска с помощью заводной рукоятки. Это было ненадежно и неудобно. Сейчас от таких решений отказались в пользу электрической системы запуска.

Система пуска автомобиля назначение и технические требования

Система пуска автомобиля служит для автоматического дистанционного пуска двигателя и состоит из стартера, механизма зацепления, электромагнитного реле и вспомогательного реле. Основными техническими требованиями к системе пуска являются:

электрическая проводка питания стартера и реле надежно крепится. Стартеры, например, для легковых автомобилей СТ 29.3708, СТ 230-62, для грузовых автомобилей СТ 142 Б, СТ 130 Б потребляют ток от 550 до 850 А с частотой вращения до 5 тыс. мин-1 с последующим снижением тока до 80-100 А.

Устройство системы запуска двигателя

В систему пуска двигателя входят следующие ключевые элементы:


Схема запуска двигателя
Ключевым элементом системы является стартер, который, в свою очередь, питается от аккумуляторной батареи. Это электродвигатель постоянного тока. Он создает крутящий момент, который передается маховику и коленчатому валу.

Система пуска обеспечивает первоначальное проворачивание коленчатого вала при запуске двигателя. Для того чтобы двигатель самостоятельно начал работать, его коленчатому валу нужно сообщить определенную начальную (пусковую) частоту вращения. Для этих целей используется электрический стартер, обеспечивающий пусковую частоту вращения коленчатого вала: для бензиновых двигателей 40…100 об/мин, а для дизелей до 250 об/мин.
Пусковая частота зависит от условий смесеобразования и зажигания двигателя и является минимальной частотой вращения коленчатого вала, при которой в цилиндрах начинаются вспышки.

Мощность стартера зависит от момента сопротивления проворачиванию коленчатого вала и пусковой частоты. Момент сопротивления проворачиванию пропорционален рабочему объему двигателя и складывается из следующих составляющих:

— момент сил трения между поверхностями сопряжения деталей двигателя и во вспомогательных механизмах, связанных с коленчатым валом;

— момент инерционных сил, возрастающих при увеличении оборотов в процессе пуска двигателя;

— момент сопротивления, возникающий из-за процессов сжатия, происходящих в цилиндрах двигателя.

На специальной и тракторной технике некоторые двигатели имеют декомпрессионный механизм для облегчения пуска.

Схемы систем электростартерного пуска бензиновых двигателей отличаются между собой незначительно (рис. 2.1). В системах управления электростартером предусмотрены электромагнитные тяговые реле

с
механизмом привода
,
дополнительные реле
,
реле блокировки
, обеспечивающее дистанционное включение, автоматическое отключение стартера от АКБ после пуска двигателя и предотвращение включения стартера при работающем двигателе.

Источником энергии электростартерного пуска является стартерная АКБ

. В электростартерах используют
электродвигатели постоянного тока
. Характеристики стартерного электропривода с электродвигателями постоянного тока последовательного или смешанного возбуждения хорошо согласуются с характером нагрузки, создаваемой поршневым двигателем при пуске.

На тракторной, специальной, а также автомобильной технике, работающей в особых климатических условиях, часто применяются электрические устройства для облегчения пуска

Классический стартер (рис. 2.6) представляет собой электродвигатель постоянного тока с механизмом привода, управляемым тяговым реле и питанием от аккумуляторной батареи. Обычно такие стартеры имеют шестерню на валу якоря, с помощью которой осуществляется зубчатое зацепление с венцом маховика двигателя. При этом передаточное отношение шестеренного привода составляет 10…18 и ограничивается прочностными характеристиками зубьев привода.

Читайте также:  Поршень двигатель умз 4178

Сила тока в обмотках стартера может составлять 200…500 А и выше. По мере увеличения частоты вращения якоря сила тока в обмотках уменьшается и соответственно уменьшается момент на валу якоря. Такой закон изменения крутящего момента наиболее благоприятен для пуска двигателя, так как в начале проворачивания коленчатого вала момент сопротивления наибольший.

Обычно стартеры имеют конструкцию, где статорная обмотка в них соединена последовательно с обмоткой якоря (рис. 2.2) – эти электродвигатели имеют последовательное возбуждение. Крутящий момент стартера зависит от двух факторов: магнитного поля статора и тока якоря, поэтому электродвигатель с последовательным возбуждением предпочтительнее, когда требуется создать большой крутящий момент. При включении стартера, в момент пуска электродвигателя, потребляемый ток максимален и ограничивается только сопротивлением обмоток. Такие стартеры могут развивать без нагрузки очень высокие обороты, и поэтому не рекомендуется их запускать вхолостую.

Рис. 2.1. Типичная схема электростартерного пуска

Рис. 2.2. Электродвигатель постоянного тока с последовательным возбуждением:

а) принципиальное устройство;

б) цепь стартера с последовательным возбуждением

1-обмотка возбуждения; 2-полюс магнита (магнитопровод); 3-якорь; 4-щетки; 5-коллектор; 6-АКБ; 7-замок зажигания

Кроме электродвигателей с последовательным возбуждением

, также существуют и электродвигатели смешанного возбуждения, независимого и электродвигатели с возбуждением от постоянных магнитов (рис. 2.3).

Электродвигатели с независимым питанием обмотки возбуждения

(рис. 2.3 д) в системах электростартерного пуска автомобильной и тракторной техники не применяются, так как на борту один пусковой источник – АКБ.

Электродвигатели с параллельным возбуждением

(рис. 2.3. а) в автомобильных электростартерах неэффективны при эксплуатации в холодных условиях (–20 ºС), а также имеют жесткую характеристику возбуждения, которая недопустима при малых передаточных отношениях, так как это может привести к поломке зубьев и привода.

Смешанное возбуждение стартерных электродвигателей

(рис. 2.3 в) позволяет объединить достоинства благоприятной характеристики последовательного возбуждения с плавностью хода и ограничением максимальных оборотов благодаря параллельному возбуждению. Такие электродвигатели имеют умеренно жесткую характеристику возбуждения.

Рис. 2.3. Типы возбуждения стартерных электродвигателей и их характеристики:

а) параллельное; б) последовательное; в) смешанное; г) от постоянных магнитов; д) независимое

В современных электростартерах чаще стала использоваться конструкция с независимым и неуправляемым возбуждением от постоянных магнитов

. Такие стартеры в своей конструкции имеют понижающий планетарный редуктор. Здесь сочетается относительно жесткая характеристика возбуждения и минимальная пусковая частота при максимальной нагрузке.
2.2. Электрический стартер с последовательным и смешанным возбуждением

Рассмотрим устройство и принцип работы стартера с предварительным зацеплением (рис. 2.4). Питание стартерного электродвигателя 10 осуществляется от АКБ через замкнутые контакты 1 тягового электромагнитного реле. При замыкании контактов выключателя S
приборов и стартера, дополнительного реле и реле блокировки, втягивающая 4 и удерживающая 5 обмотки тягового реле подключаются к аккумуляторной батарее. Якорь 6 тягового реле притягивается к магнитопроводу электромагнита и с помощью штока 7 и рычага 9 механизма привода вводит шестерню 13 в зацепление с зубчатым венцом 14 маховика двигателя.

Рис. 2.4. Схема управления электростартера с предварительным зацеплением: 1-контактные болты; 2-подвижная контактная пластина; 3-возвратная пружина; 4,5-соответственно втягивающая и удерживающая обмотки тягового реле; 6-якорь тягового реле; 7-шток; 8-обмотка возбуждения; 9-рычаг механизма привода; 10-электростартер; 11-поводковая муфта; 12-муфта свободного хода; 13-шестерня привода; 14-зубчатый венец маховика

После пуска двигателя, муфта 12 свободного хода (рис. 2.5) предотвращает передачу вращающего момента от маховика к валу якоря электродвигателя. Ролики поджаты пружинами в направлении вращения якоря, и они либо заклиниваются между ведущим и ведомым звеньями муфты, когда скорость якоря равна скорости двигателя, либо дают им свободно вращаться, когда двигатель развивает скорость, больше чем якорь.

Шестерня привода из зацепления с венцом маховика не выходит до тех пор, пока замкнуты контактные болты 1 (рис. 2.4). При размыкании выключателя S

втягивающая и удерживающая обмотки тягового реле подсоединяются к АКБ последовательно через силовые контактные болты 1. Так как число витков у обеих обмоток одинаково и по ним при последовательном соединении проходит ток одной и той же силы, то при разомкнутом выключателе
S
в них возникают два равных, но противоположно направленных магнитных потока. Магнитопровод электромагнита размагнитится, и возвратная пружина переместит якорь 6 реле в исходное нерабочее положение, тем самым выводя шестерню из зацепления с венцом маховика. При этом разомкнуться и силовые контактные болты 1. Типичная конструкция стартера с предварительным зацеплением показана на рис. 2.6.

1-буферная пружина; 2-наружное обойма (ведущее звено); 3-внутренняя обойма (ведомое звено); 4-ролики; 5-шестерня

Как работает запуск двигателя

После поворота ключа в замке зажигания в положение «запуск» замыкается электрическая цепь. Ток по плюсовой цепи от аккумулятора поступает на обмотку тягового реле стартера. Затем по обмотке возбуждения ток проходит к плюсовой щетке, затем по обмотке якоря на минусовую щетку. Так срабатывает тяговое реле. Подвижный сердечник втягивается и замыкает силовые пятаки. При движении сердечника выдвигается вилка, которая толкает приводной механизм (бендикс).

После замыкания силовых пятаков от аккумулятора подается пусковой ток по плюсовому проводу на статор, щетки и ротор (якорь) стартера. Вокруг обмоток возникает магнитное поле, которое приводит в движение якорь. Таким образом электрическая энергия от аккумулятора преобразуется в механическую энергию.


Работа выключенного и включенного стартера

Как уже было сказано, вилка, во время движения втягивающего реле, выталкивает бендикс к венцу маховика. Так происходит зацепление. Якорь вращается и приводит в движение маховик, который передает это движение коленчатому валу. После запуска двигателя маховик раскручивается до больших оборотов. Чтобы не повредить стартер, срабатывает обгонная муфта бендикса. При определенной частоте бендикс вращается независимо от якоря.

После запуска двигателя и отключения зажигания от положения «запуск» бендикс принимает исходное положение, а двигатель работает самостоятельно.

Советы и рекомендации

Кнопка запуска двигателя работает так, что водитель нажимает на нее и удерживает необходимое для пуска время. За этот отрезок времени стартер вращает коленвал, в результате происходит запуск ДВС. Затем конпку можно отпустить.

Отметим, что при выборе кнопки запуска двигателя «старт-стоп» следует учесть ряд определенных нюансов. Одним из таких моментов является вопрос фиксации данной кнопки. Оптимальным вариантом является такой, когда после нажатия контакты замкнуты, а после отпускания размыкаются. Если же кнопка будет иметь фиксацию, тогда после запуска двигателя для размыкания контактов потребуется быстро нажимать на нее еще раз.

Что касается самой кнопки, в свободной продаже представлены много доступных решений, которые отличаются по качеству исполнения, цене и другим характеристикам. Данные кнопки могут иметь подсветку, изготавливаются из пластика или металла.

По указанным причинам при выборе стоит учесть:

С учетом таких особенностей эксплуатации лучше выбирать кнопку запуска мотора с качественным наружным покрытием (например, хромирование). Такое изделие будет иметь стойкость к истиранию для сохранения приемлемого внешнего вида

Также нужно понимать, что дешевые предложения могут перегореть спустя всего несколько нажатий, так что данному аспекту следует уделить повышенное внимание

Особенности работы аккумуляторной батареи

От состояния и мощности аккумулятора будет зависеть успешный запуск двигателя. Многие знают, что для АКБ важны такие показатели, как емкость и ток холодной прокрутки. Эти параметры указываются на маркировке, например, 60/450А. Емкость измеряется в Ампер-часах. Аккумулятор имеет малое внутренне сопротивление, поэтому он может кратковременно отдавать большие токи, в несколько раз превышающие его емкость. Указанный ток холодной прокрутки 450А, но при соблюдении определенных условий: +18С° в течение не более 10 секунд.

Однако, подаваемый ток на стартер все равно будет меньше указанных значений, так как не учитывается сопротивление самого стартера и силовых проводов. Этот ток и называется пусковым током.

Справка. Внутреннее сопротивление аккумулятора в среднем составляет 2-9 мОм. Сопротивление стартера бензинового мотора в среднем 20-30 мОм. Как видно, для правильной работы необходимо, чтобы сопротивление стартера и проводов в несколько раз превышало сопротивление аккумулятора, иначе внутреннее напряжение аккумулятора при пуске будет проседать ниже 7-9 вольт, а этого допускать нельзя. В момент подачи тока напряжение исправного АКБ проседает в среднем до 10,8В в течение нескольких секунд, а затем вновь восстанавливается до 12В или чуть выше.

Аккумулятор отдает пусковой ток на стартер в течение 5-10 секунд. Затем нужно сделать паузу 5-10 секунд, чтобы аккумулятор «набрался сил».

Читайте также:  Самоделки с постоянным двигателем

Если после попытки запуска напряжение в бортовой сети резко падает или стартер прокручивается наполовину, то это свидетельствует о глубоком разряде АКБ. Если стартер выдает характерные щелчки, то аккумулятор окончательно сел. Среди других причин может быть поломка стартера.

Заводские характеристики АКБ, которые влияют на ее работу

Каждая АКБ имеет ряд параметров, которые стоит учитывать при выборе.

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ: Тонировка авто — виды, особенности и стоимость

К ним можно отнести:

Сила тока при старте

Стартеры для бензинового и дизельного мотора будут отличаться по мощности. Для бензиновых ДВС используются стартеры мощностью 0,8-1,4 кВт, для дизельных – 2 кВт и выше. Что это значит? Это значит, что стартеру с дизельным мотором нужно больше мощности, чтобы прокрутить коленвал на сжатие. Стартер мощностью 1 кВт потребляет 80А, 2 кВт потребляет 160А. Больше всего энергии уходит на начальную прокрутку коленчатого вала.

Среднее значение пускового тока для бензинового двигателя – 255А для успешной прокрутки коленвала, но это с учетом плюсовой температуры 18С° или выше. При минусовой температуре стартеру нужно крутить коленвал в загустевшем масле, что повышает сопротивление.

Какой блок автозапуска выбрать

Перед покупкой блока необходимо определить, какие функции вам необходимы и сколько вы готовы заплатить за них. Если у вас уже стоит какая-то сигнализация, желательно найти блок автозапуска, совместимый с ней. Это позволит избежать серьезной переделки электропроводки автомобиля. Если же у вас установлена устаревшая сигнализация, которая обеспечивает только подачу звукового сигнала при попытке взлома или угона, то имеет смысл установить автозапуск, совмещенный с сигнализацией.

Блоки, которые расширяют возможности сигнализаций, обойдутся существенно дешевле, чем отдельные устройства. К примеру, релейный модуль Pandora RMD-8, совместимый с большинством сигнализаций Pandora, обойдется в 2-3 тысячи рублей. Модуль обеспечивает уверенный пуск и контроль работы как бензинового, так и дизельного двигателя. Его присоединяют к стандартной CAN-шине автомобиля, поэтому никаких серьезных переделок электропроводки не потребуется.

Более функциональные блоки с GSM-модулем обойдутся в 5-10 тысяч рублей. К примеру, стоимость модуля Starline M31 составляет 8-10 тысяч рублей. Модуль работает как с сигнализациями Starline, так и самостоятельно. При самостоятельном использовании модуля он в какой-то мере выполняет функции автосигнализации. Благодаря встроенному GPS-блоку, модуль информирует о местонахождении автомобиля, включении и выключении двигателя, позволяет проводить аудио и видеонаблюдение за происходящим в салоне. Для управления модулем используют телефон, планшет или другое устройство, работающее с соответствующей SIM-картой. Наличие трех резервных входов модуля, позволяет подключить к ним датчики дверей, вибрации или другие устройства. Единственный недостаток GSM-модулей – необходимость оплачивать трафик. Если модуль используется только в режиме обмена SMS, то ежемесячная оплата будет заметно ниже, но снизится и функциональность. Если же модуль работает в режиме постоянной связи, то оплата будет больше, но и сам модуль сможет выполнять большее число функций, среди которых возможность контролировать автомобиль в реальном времени.

Если же вам необходима полноценная сигнализация с функцией автозапуска, то неплохой вариант Starline D94 GSM Slave. Эта сигнализация обойдется в 20-25 тысяч рублей. Сигнализация оснащена встроенным датчиком вибрации, поддомкрачивания и угона. Сигнализация поддерживает подключение большого количества сторонних датчиков, что улучшает контроль безопасности. Встроенный GSM-модуль позволяет управлять сигнализацией не только с помощью штатного брелка, но и через соответствующее приложение в телефоне, смартфоне или планшете. Сигнализацию устанавливают на современные автомобили, оснащенные CAN-шиной. Единственный недостаток сигнализации – отсутствие GPS/GLONASS модуля, из-за чего невозможно отслеживание местоположения автомобиля.

Если по каким-то причинам вам не подходит GSM модуль или сигнализация, обратите внимание на традиционные устройства, использующие радиоканал. К примеру, Starline A91 Dialog

Стоимость сигнализации составляет 6-9 тысяч рублей. Брелок обеспечивает устойчивую связь с сигнализацией на расстоянии до 250 метров. Вся информация о состоянии автомобиля передается на брелок и отображается с помощью ЖК индикатора. Наличие дополнительных исполнительных каналов позволяет подключать различные устройства. К примеру, модуль управления зеркалами, предпусковой подогреватель или электрический привод, регулирующий высоту или положение сидений.

Особенности запуска двигателя в зимних условиях

В зимнее время бывает трудно запустить двигатель. Масло густеет, а значит провернуть его труднее. Также часто подводит аккумулятор.

При минусовой температуре внутреннее сопротивление аккумулятора повышается, батарея садится быстрее, также неохотно отдает нужный пусковой ток. Для успешного пуска двигателя зимой АКБ должна быть полностью заряжена и не должна быть замерзшей. Дополнительно нужно следить за контактами на клеммах.

Вот несколько советов, которые помогут запустить двигатель зимой:

Тысячи водителей ежедневно заводят свои моторы и едут по делам. Начало движения возможно благодаря слаженной работе системы запуска двигателя. Зная ее устройство, можно не только запускать двигатель в самых разных условиях, но и подобрать нужные компоненты в соответствии с требованиями именно к вашему автомобилю.

Как устанавливают блок автозапуска на автомобиль

Схема подключения и распиновка кнопки стеклоподъемников ВАЗ

Для установки блока автозапуска придется серьезно изменить электропроводку автомобиля. Ведь блок автозапуска включает двигатель в обход штатной процедуры. При подключении блока автозапуска к автомобилю, оснащенному CAN-шиной, потребуется перепрограммировать контроллер. Поэтому самостоятельная установка блока или системы автозапуска возможна лишь в случае, если вы профессиональный автоэлектрик и обладаете необходимым оборудованием. Во всех остальных случаях велика вероятность ошибки, которая приведет к повреждению блока, а то и короткому замыканию электропроводки автомобиля. Поэтому устанавливайте блок автозапуска там же, где и приобретаете его. Это позволит избежать ошибок при подключении.

Система выпуска отработавших газов

Теперь, когда мы знаем о ряде вещей, которые мы положили (налили) в свой ​​автомобиль, давайте посмотрим на другие вещи, которые выходят из него. Система выпуска включает в себя выхлопную трубу и глушитель. Без глушителя Вы бы услышали звук тысяч маленьких взрывов из своей ​​выхлопной трубы. Глушитель гасит звук. Выхлопная система также включает в себя каталитический нейтрализатор, который использует катализатор и кислород, чтобы сжечь всё неиспользованное топливо и некоторые другие химические веществ в выхлопных газах. Таким образом, Ваш автомобиль соответствует определённым евростандартам по уровню загрязнения воздуха.

Что ещё есть, кроме всего вышеперечисленного в автомобиле? Электрическая система состоит из аккумулятора и генератора. Генератор подключен к двигателю ремнём и вырабатывает электроэнергию для зарядки аккумулятора. Аккумулятор выдаёт 12-вольтовый заряд электрической энергии, доступной ко всему в машине, нуждающемуся в электроэнергии (системе зажигания, магнитоле, фарам, стеклоочистителям, электрическим стеклоподъемникам, приводу сидений, бортовому компьютеру и ещё множеству устройств) посредством проводки автомобиля.

Теперь можно сказать, что Вы знаете всё об основах главных подсистем двигателей!

Принцип работы оборудования автозапуска

Система дистанционного запуска двигателя может быть установлена автономно, либо совместно с охранной сигнализацией. Комплектующие устройства помещаются в небольшой корпус из пластика и располагаются под капотом. Стандартный набор включает: электронную плату, связанную с группой датчиков, и провода для подключения к электропроводке автомобиля. Автозапуском может быть оборудована машина с любым типом мотора (бензин, дизель) и коробки переключения передач (автоматическая, механическая, роботизированная, вариатор). Дополнительных требований к техническому состоянию авто не предъявляется.
При нажатии на кнопку брелока или при запуске соответствующей программы в приложении сигнал передается на специальный модуль, а блок управления, в свою очередь, питает электрическую цепь системы зажигания. Спустя некоторое время, необходимое для создания давления топлива бензонасосом в топливной рампе стартеру передается необходимое питание. Результат этого действия подобен повороту ключа зажигания или нажатию кнопки «Старт».

Устройство автозапуска регулирует работу мотора в течение времени, заданного механизмом, по истечении которого, происходит отключение стартера. В отличие от бензиновых ДВС в автомобилях с дизельными агрегатами система автозапуска, в первую очередь, активирует свечи накаливания. Такой алгоритм позволяет правильно прогреть цилиндры и только после этого подключать к работе стартер.

От чего зависит мощность АКБ, и как на это влияет пусковой ток?

Как уже упоминалось выше, мощность источника питания зависит от параметра разрядного тока и среднего показателя напряжения.

Все показатели измеряются через идентичные временные промежутки. При этом расчет мощности осуществляется по простой формуле:

Источник