Соединение катушек асинхронного двигателя

Содержание
  1. Выводы обмоток электродвигателя — схемы соединения
  2. Обозначение выводов обмоток статора
  3. Схема соединения обмоток электродвигателя по схеме «треугольник»
  4. Схема соединения обмоток электродвигателя по схеме «звезда»
  5. Определение выводов обмоток
  6. Однофазный асинхронный двигатель: схема подключения с пусковой обмоткой и конденсаторным запуском — чем отличаются и как их реализовать на практике
  7. С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем
  8. Как состояние подшипников влияет на работу двигателя
  9. Что надо учитывать в конструкции статорных обмоток и как их подготовить
  10. Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице
  11. Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки
  12. Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии
  13. Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

Выводы обмоток электродвигателя — схемы соединения

Обозначение выводов обмоток статора

Каждый статор трехфазного электродвигателя имеет три катушечные группы (обмотки) — по одной на каждую фазу, а у каждой катушечной группы имеется по 2 вывода — начало и конец обмотки, т.е. всего 6 выводов которые подписываются следующим образом:

Условно на схемах каждая обмотка изображается следующим образом:

Начала и концы обмоток выводятся в клемную коробку электродвигателя в следующем порядке:

В зависимости от соединения этих выводов меняются такие параметры электродвигателя как напряжение питающей сети и номинальный ток статора. О том по какой схеме необходимо подключить обмотки электродвигателя можно узнать из паспортных данных.

Основными схемами соединения обмоток являются треугольник (обозначается — Δ) и звезда (обозначается — Y) их мы и разберем в данной статье.

Примечание: В клемной коробке некоторых электродвигателей можно увидеть только три вывода — это значит, что обмотки двигателя уже соединены внутри его статора. Как правило внутри статора обмотки соединяются при ремонте электродвигателя (в случае если заводские обмотки сгорели). В таких двигателях обмотки, как правило, соединены по схеме «звезда» и рассчитаны на подключение в сеть 380 Вольт. Для подключения такого двигателя необходимо просто подать три фазы на три его вывода.

Схема соединения обмоток электродвигателя по схеме «треугольник»

Условно на схеме это изображается следующим образом:

На выводы «A», «B» и «C» подается напряжение.

В клемной коробке электродвигателя соединение обмоток по схеме «треугольник» имеет следующий вид:

A, B, C — точки подключения питающего кабеля.

Схема соединения обмоток электродвигателя по схеме «звезда»

Что бы соединить обмотки электродвигателя по схеме «звезда» необходимо концы обмоток (С4/ U2, С5/V2 и С6/W2) соединить в общую точку, напряжение при этом подается на начала обмоток (С1/U1, С2/V1 и С3/W1).

Условно на схеме это изображается следующим образом:

В клемной коробке электродвигателя соединение обмоток по схеме «звезда» имеет следующий вид:

Определение выводов обмоток

Иногда возникают ситуации когда сняв крышку с клемной коробки электродвигателя можно с ужасом обнаружить следующую картину:

При этом выводы обмоток не подписаны, что же делать? Без паники, этот вопрос вполне решаем.

Первое, что нужно сделать — это разделить выводы по парам, в каждой паре должны быть выводы относящиеся к одной обмотке, сделать это очень просто, нам понадобится тестер или двухполюсный указатель напряжения.

В случае использования тестера устанавливаем его переключатель в положение измерения сопротивления (подчеркнуто красной линией), при использовании двухполюсного указателя напряжения им, перед применением, необходимо коснуться токоведущих частей находящихся под напряжением на 5-10 секунд, для его зарядки и проверки работоспособности.

Далее необходимо взять один любой вывод обмотки, условно примем его за начало первой обмотки и соответственно подписываем его «U1», после касаемся одним щупом тестера или указателя напряжения подписанного нами вывода «U1», а вторым щупом любого другого вывода из оставшихся пяти неподписанных концов. В случае, если коснувшись вторым щупом второго вывода показания тестера не изменились (тестер показывает единицу) или в случае с указателем напряжения — ни одна лампочка не зажглась — оставляем этот конец и касаемся вторым щупом другого вывода из оставшихся четырех концов, перебираем вторым щупом концы до тех пор пока показания тестера не изменятся, либо, в случае с указателем напряжения — до тех пор пока не загорится лампочка «Test». Найдя таким образом второй вывод нашей обмотки принимаем его условно как конец первой обмотки и подписываем его соответственно «U2».

Таким же образом поступаем с оставшимися четырьмя выводами, так же разделив их на пары подписав их соответственно как V1,V2 и W1,W2. Как это делается можно увидеть на видео ниже.

Теперь, когда все выводы разделены по парам, необходимо определить реальные начала и концы обмоток. Сделать это можно двумя методами:

Первый и самый простой метод — метод подбора, может применяться для электродвигателей мощностью до 5 кВт. Для этого берем наши условные концы обмоток (U2,V2 и W2) и соединяем их, а на условные начала (U1,V1 и W1), кратковременно, желательно не более 30 секунд, подаем трехфазное напряжение:

Читайте также:  Система смазки газотурбинного двигателя

Если двигатель запустился и работает нормально, значит начала и концы обмоток определены верно, если двигатель сильно гудит и не развивает должные обороты, значит где то есть ошибка. В этом случае необходимо всего лишь поменять любые два вывода одной обмотки местами, например U1 c U2 и запустить заново:

Если проблема не устранилась, возвращаем U1 и U2 на свои места и меняем местами следующие два вывода — V1 с V2:

Если двигатель заработал нормально, выводы определены верно, работа закончена, если нет — возвращаем V1 и V2 по своим местам и меняем местами оставшиеся выводы W1 с W2.

Второй способ: Соединяем последовательно вторую и третью обмотки т.е. соединяем вместе конец второй обмотки с началом третьей (выводы V2 с W1),а на первую обмотку к выводам U1 и U2 подаем пониженное переменное напряжение (не более 42 Вольт). При этом на выводах V1 и W2 так же должно появиться напряжение:

Если напряжение не появилось, значит вторая и третья обмотки соединены неверно, фактически оказались соединены вместе два начала (V1 с W1) или два конца (V2 c W2), в данном случае нам просто нужно поменять надписи на второй или на третьей обмотке, например V1 с V2. Затем аналогичным способом проверить первую обмотку, соединив ее последовательно со второй, а на третью подав напряжение. Данный способ представлен на следующем видео:

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Источник

Однофазный асинхронный двигатель: схема подключения с пусковой обмоткой и конденсаторным запуском — чем отличаются и как их реализовать на практике

Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

Читайте также:  Регулировка оборотов двигателя снегоуборщика

Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

Техническое состояние изоляции обмоток

Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

Как видите, промышленностью массово выпущены модели с:

А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

Помечаем эти 3 конца уже понятной нам маркировкой:

Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

Тогда кнопку запуска отпускают:

Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

Читайте также:  Оппозитный двигатель субару трибека

Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

Конденсатор подключают к выводам пусковой и рабочей обмоток.

В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

Здесь получается, что:

Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

Где взять номиналы главного и вспомогательного конденсаторов?

Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

Владелец
видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

Источник

Adblock
detector